Skip to main content

Advertisement

Log in

Achondroplasia and enchondromatosis: report of three boys

  • Case Report
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

We report on three boys suffering from achondroplasia concurrent with enchondromatosis-like metaphyseal changes. Two boys who were examined by molecular analysis harbored a mutation of FGFR3, which occurs in most achondroplastic individuals. Given the prevalence of achondroplasia and enchondromatosis, the metaphyseal changes in these patients are less likely to represent the coincidence of both disorders, but rather to result from a rare consequence of the FGFR3 mutation. Impaired FGFs/FGFR3 signaling pathway in achondroplasia inhibits chondrocytic proliferation, which accounts for most characteristics of achondroplasia. On the other hand, it causes conflicting biological consequences that can suppress or stimulate chondrocytic maturation. In a small subset of achondroplastic individuals, the suppression of chondrocytic maturation may outweigh the stimulation, which leads to cartilaginous overgrowth into the metaphysis, eventually causing the metaphyseal dysplasia found in the present patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Shiang R, Thompson LM, Zhu YZ et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 1994;78:335–342

    Article  CAS  Google Scholar 

  2. Rousseau F, Bonaventure J, Legeai-Mallet L et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 1994;371:252–254

    Article  CAS  Google Scholar 

  3. Bellus GA, Hefferon TW, Ortiz de Luna RI et al. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet 1995;56:368–373

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Naski MC, Wang Q, Xu J, Ornitz DM. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 1996;13:233–237

    Article  CAS  Google Scholar 

  5. Nizankowska-Blaz T, Wisz S, Kozlowski K. Achondroplasia and enchondromatosis in a female child. Skeletal Radiol 2003;32:432–434

    Article  CAS  Google Scholar 

  6. Tachibana K, Suwa S, Nishiyama S, Matsuda I. A study on the height of children with achondroplasia based on a nationwide survey. J Pediatr Prac 1997;60:1363–1369 (In Japanese)

    Google Scholar 

  7. Enchondromatosis, Ollier type. In: Spranger JW, Brill PW, Poznanski A, eds. Bone dysplasias: an atlas of genetic disorders of skeletal development, 2nd edition. Oxford University Press, Oxford; 2002;554–569

  8. Pauli RM. Achondroplasa. In: Cassidy SB, Allanson JE, eds. Management of genetic syndrome, 2nd edition. John Wiley & Sons Inc, Hoboken; 2005;13–29

    Google Scholar 

  9. Ollier’s disease. In: Wynne-Davies R, Hall CM, Apley AG, eds. Atlas of skeletal dysplasias. Churchill Livingstone, Edinburgh; 1985;533–536

  10. Su WC, Kitagawa M, Xue N et al. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 1997;386:288–292

    Article  CAS  Google Scholar 

  11. Schipani E, Kruse K, Juppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 1995;268:98–100

    Article  CAS  Google Scholar 

  12. Hopyan S, Gokgoz N, Poon R et al. A mutant PTH/PTHrP type I receptor in enchondromatosis. Nature Genet 2002;30:306–310

    Article  Google Scholar 

  13. Naski MC, Colvin JS, Coffin JD, Ornitz DM. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 1998;125:4977–4988

    CAS  PubMed  Google Scholar 

  14. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999;13:2072–2086

    Article  CAS  Google Scholar 

  15. Murakami S, Kan M, McKeehan WL, de Crombrugghe B. Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 2000;97:1113–1118

    Article  CAS  Google Scholar 

  16. Foster JW, Dominguez-Steglich MA, Guioli S et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 1994;372:525–530

    Article  CAS  Google Scholar 

  17. Bi W, Huang W, Whitworth DJ et al. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci USA 2001;98:6698–6703

    Article  CAS  Google Scholar 

  18. Sponseller PD, Ain AC. The skeletal dysplasias. In: Morrissy RT, Weinstein SL, eds. Lovell and Winter’s Pediatric Orthopaedics, 6th edition. Lippincott Williams and Wilkins, Philadelphia; 2006;205–250

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikahiko Numakura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Numakura, C., Kobayashi, H., Hasegawa, Y. et al. Achondroplasia and enchondromatosis: report of three boys. Skeletal Radiol 36 (Suppl 1), 29–33 (2007). https://doi.org/10.1007/s00256-006-0161-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-006-0161-x

Keywords

Navigation