Skip to main content
Log in

The value of water-excitation 3D FLASH and fat-saturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee

  • Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the diagnostic accuracy of water-excitation (WE) 3D FLASH and fat-saturated (FS) proton density-weighted (PDw) TSE MR imaging for detecting, grading, and sizing articular cartilage lesions of the knee.

Design and patients

A total of 26 patients underwent MR imaging prior to arthroscopy with the following sequences: (1) WE 3D FLASH: 28/11 ms, scan time: 4 min 58 s, flip angle: 40°; (2) FS PDw TSE: 3433/15 ms, scan time: 6 min 15 s, flip angle: 180°. Grade and size of the detected lesions were quantified and compared with the results of arthroscopy for each compartment.

Results

The sensitivity, specificity, positive and negative predictive values, and accuracy for detecting cartilage lesions were 46%, 92%, 81%, 71% and 74% for WE 3D FLASH and 91%, 98%, 96%, 94% and 95% for FS PDw TSE MR imaging. WE 3D FLASH correlated significantly with arthroscopy for grading on the patella (P<0.0001) and the femoral trochlea (P=0.02) and for sizing on the femoral trochlea (P=0.03). FS PDw correlated significantly (P<0.0001) with arthroscopy for grading and sizing on all compartments.

Conclusion

FS PDw TSE is an accurate method for detecting, grading and sizing articular cartilage lesions of the knee and yielded superior results relative to WE 3D FLASH MR imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A, B.
Fig. 3A, B.
Fig. 4A, B.

Similar content being viewed by others

References

  1. Disler DG, Recht MP, McCauley TR. MR imaging of articular cartilage. Skeletal Radiol 2000; 29:367–377.

    Article  CAS  PubMed  Google Scholar 

  2. Bredella MA, Tirman PF, Peterfy CG, et al. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 1999; 172:1073–1080.

    CAS  PubMed  Google Scholar 

  3. McCauley TR, Disler DG. Magnetic resonance imaging of articular cartilage of the knee. J Am Acad Orthop Surg 2001; 9:2-8.

    CAS  PubMed  Google Scholar 

  4. Bachmann G, Heinrichs C, Jurgensen I, Rominger M, Scheiter A, Rau WS. Comparison of different MRT techniques in the diagnosis of degenerative cartilage diseases. In vitro study of 50 joint specimens of the knee at T1.5. Rofo 1997; 166:429–436.

    CAS  Google Scholar 

  5. Brossmann J, Frank LR, Pauly JM, et al. Short echo time projection reconstruction MR imaging of cartilage: comparison with fat-suppressed spoiled GRASS and magnetization transfer contrast MR imaging. Radiology 1997; 203:501–507.

    CAS  PubMed  Google Scholar 

  6. Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging [see comments]. J Bone Joint Surg Am 1998; 80:1276–1284.

    CAS  PubMed  Google Scholar 

  7. Rand T, Brossmann J, Pedowitz R, Ahn JM, Haghigi P, Resnick D. Analysis of patellar cartilage. Comparison of conventional MR imaging and MR and CT arthrography in cadavers. Acta Radiol 2000; 41:492–497.

    CAS  PubMed  Google Scholar 

  8. Murphy BJ. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 2001; 30:305–311.

    Article  CAS  PubMed  Google Scholar 

  9. Ahn JM, Kwak SM, Kang HS, et al. Evaluation of patellar cartilage in cadavers with a low-field-strength extremity-only magnet: comparison of MR imaging sequences, with macroscopic findings as the standard. Radiology 1998; 208:57–62.

    CAS  PubMed  Google Scholar 

  10. Graichen H, Springer V, Flaman T, et al. Validation of high-resolution water-excitation magnetic resonance imaging for quantitative assessment of thin cartilage layers. Osteoarthritis Cartilage 2000; 8:106–114.

    CAS  PubMed  Google Scholar 

  11. Hyhlik-Durr A, Faber S, Burgkart R, et al. Precision of tibial cartilage morphometry with a coronal water-excitation MR sequence. Eur Radiol 2000; 10:297–303.

    PubMed  Google Scholar 

  12. Springer V, Graichen H, Stammberger T, Englmeier KH, Reiser M, Eckstein F. Noninvasive analysis of cartilage volume and cartilage thickness in the human elbow joint using MRI. Anat Anz 1998; 180:331–338.

    CAS  PubMed  Google Scholar 

  13. Heudorfer L, Hohe J, Faber S, Englmeier KH, Reiser M, Eckstein F. [Precision MRI-based joint surface and cartilage density analysis of the knee joint using rapid water-excitation sequence and semi-automatic segmentation algorithm]. Biomed Tech 2000; 45:304-310.

    CAS  Google Scholar 

  14. Recht MP, Kramer J, Marcelis S, et al. Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology 1993; 187:473–478.

    CAS  PubMed  Google Scholar 

  15. Noyes FR, Stabler CL. A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 1989; 17:505–513.

    CAS  PubMed  Google Scholar 

  16. Peh WC, Chan JH. Artifacts in musculoskeletal magnetic resonance imaging: identification and correction. Skeletal Radiol 2001; 30:179–191.

    Article  CAS  PubMed  Google Scholar 

  17. Disler DG, McCauley TR, Kelman CG, et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol 1996; 167:127–132.

    CAS  PubMed  Google Scholar 

  18. Potter HG, Rodeo SA, Wickiewicz TL, Warren RF. MR imaging of meniscal allografts: correlation with clinical and arthroscopic outcomes. Radiology 1996; 198:509–514.

    CAS  PubMed  Google Scholar 

  19. Gray ML, Burstein D, Xia Y. Biochemical (and functional) imaging of articular cartilage. Semin Musculoskelet Radiol 2001; 5:329–343.

    Article  CAS  PubMed  Google Scholar 

  20. Hohe J, Faber S, Stammberger T, Reiser M, Englmeier KH, Eckstein F. A technique for 3D in vivo quantification of proton density and magnetization transfer coefficients of knee joint cartilage. Osteoarthritis Cartilage 2000; 8:426–433.

    Article  CAS  PubMed  Google Scholar 

  21. Gagliardi JA, Chung EM, Chandnani VP, et al. Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. AJR Am J Roentgenol 1994; 163:629–636.

    CAS  PubMed  Google Scholar 

  22. Bredella MA, Tirman PF, Wischer TK, Belzer J, Taylor A, Genant HK. Reactive synovitis of the knee joint: MR imaging appearance with arthroscopic correlation. Skeletal Radiol 2000; 29:577–582.

    Article  CAS  PubMed  Google Scholar 

  23. Lee JH, Singh TT, Bolton G. Axial fat-saturated FSE imaging of knee: appearance of meniscal tears. Skeletal Radiol 2002; 31:384–395.

    Article  PubMed  Google Scholar 

  24. Jansson KA, Karjalainen PT, Harilainen A, et al. MRI of anterior cruciate ligament repair with patellar and hamstring tendon autografts. Skeletal Radiol 2001; 30:8-14.

    CAS  PubMed  Google Scholar 

  25. Recht M, Bobic V, Burstein D, et al. Magnetic resonance imaging of articular cartilage. Clin Orthop 2001: Suppl 391:379–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Mohr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohr, A. The value of water-excitation 3D FLASH and fat-saturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee. Skeletal Radiol 32, 396–402 (2003). https://doi.org/10.1007/s00256-003-0635-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-003-0635-z

Keywords

Navigation