Environmental Geology

, Volume 57, Issue 5, pp 1065–1078 | Cite as

Timing and prediction of climate change and hydrological impacts: periodicity in natural variations

Original Article

Abstract

Hydrological impacts from climate change are of principal interest to water resource policy-makers and practicing engineers. Predictive climatic models have been extensively investigated to quantify the impacts. Palaeoclmatic investigations, on the other hand, show unequivocal and strong periodicity of climate variations in proxy evidence. Yet how to use the periodicity in future hydroclimatic timing and forecasting has received less attention. This paper examines the periodicity in Pleistocene–Holocene glacial–interglacial events and in modern precipitation records, and discusses a way in which the periodicity is used for hydroclimatic predictions. The analysis, based on published CO2, ΔT2H) and δ18O proxy data of polar ice cores and deep oceanic benthic fossils, shows a periodicity in a ~100, ~40 or 25 kyear duration consistent with Milankovitch orbital regulations during the glacial–interglacial periods. On a fine time scale, millennium and multi-decadal periodicity is observed in high-resolution proxy variations of Greenland ice cores and in instrumental precipitation records of the contiguous USA. A basic periodicity of decadal and multi-decadal changes in ~20 and ~10–15 year duration is apparent in wavelet frequency analysis of both ice core proxy and precipitation data. While the kyear-scale periodicity is found of global prevalence, the millennium and decadal variations vary in space and are region-specific. Based on these findings, a generalized time-downscaling hierarchy of periodicity is proposed as a potential approach for timing and forecasting future hydroclimatic conditions at a resolution relevant to the water resources engineering and management.

Keywords

Climate change Hydrologic periodicity Precipitation variations Wavelet analysis Water resource management 

References

  1. Alley RB (2000) Ice-core evidence of abrupt climate changes. PNAS 97(4):1331–1334CrossRefGoogle Scholar
  2. Baker PA, Seltzer GO, Fritz SC, Dunbar RB, Grove MJ, Tapia PM, Cross SL, Rowe HD, Broda JP (2001) The history of south American tropical precipitation for the past 25,000 years. Science 291:640–643CrossRefGoogle Scholar
  3. Bettis EAIII, Muhs DR, Roberts HM, Wintle AG (2003) Last Glacial loess in the conterminous USA. Quat Sci Rev 22:1907–1946CrossRefGoogle Scholar
  4. Bickert T, Pätzold J, Samtleben C, Munnecke A (1997) Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochim Cosmochim Acta 61(13):2717–2730CrossRefGoogle Scholar
  5. Cacho I, Grimalt JO, Canals M (2002) Response of the Western Mediterranean Sea to rapid climatic variability during the last 50, 000 years: a molecular biomarker approach. J Mar Syst 33–34:253–272CrossRefGoogle Scholar
  6. Chaisson WP, Ravelo AC (1997) Changes in upper water-column structure at site 925, Late Miocene–Pleistocene: Planktonic Foraminifer assemblage and isotopic evidence. In: Shackleton NJ, Curry WB, Richter C, Bralower TJ (eds) Proceedings of the oceanic drilling program, scientific results, vol 154, pp 255–270Google Scholar
  7. Clausen HB, Gundestrup NS, Johnsen SJ, Bindschadler R, Zwalley J (1988) Glaciological Investigations in the Crete area, central Greenland: a search for a new deep-drilling site. Ann Glaciol 10:10–15Google Scholar
  8. Delworth TL, Knutson TR (2000) Simulation of Early 20th century global warming. Science 287:2246–2250CrossRefGoogle Scholar
  9. Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola J-M, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res 101:4115–4128CrossRefGoogle Scholar
  10. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Review: linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modeling. Int J Climatol 27:1547–1578CrossRefGoogle Scholar
  11. Fowell SJ, Cornet B, Olsen PE (1994) Geologically rapid Late Triassic extinctions: Palynological evidence from the Newark Supergroup. In: Klein GD (ed) Pangea: paleoclimate, tectonics, and sedimentation during accretion, Zenith, and breakup of a supercontinent: Geological Society of America Special Paper 288, BoulderGoogle Scholar
  12. Gingerich PD (2006) Environment and evolution through the Paleocene–Eocene thermal maximum. Trends Ecol Evolut 21(5):246–253Google Scholar
  13. Handoh IC, Lenton TM (2003) Periodic mid-Cretaceous oceanic anoxic events linked by oscillations of the phosphorus and oxygen biogeochemical cycles. Global Biogeochem Cycles 17(4):1092CrossRefGoogle Scholar
  14. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308CrossRefGoogle Scholar
  15. Haywood AM, Valdes PJ, Sellwood BW, Kaplan JO, Dowsett HJ (2001) Modelling middle Pliocene warm climates of the USA. Palaeontol Electron 4(1–5):21Google Scholar
  16. Higginson MJ, Altabet MA, Murray DW, Murray RW, Herbert TD (2004) Geochemical evidence for abrupt changes in relative strength of the Arabian monsoons during a stadial/interstadial climate transition. Geochim Cosmochim Acta 68(19):3807–3826CrossRefGoogle Scholar
  17. Howell MW, Thunell RC, DiStefano E, Sprovieri R, Tappa EJ, Sakamoto T (1998) Stable isotope chronology and paleoceanographic history of sites 963 and 964, Eastern Mediterranean Sea. Proc Ocean Drilling Program. Sci Res 160:167–180Google Scholar
  18. Intergovernmental Panel on Climate Change (2001) Climate change 2001: The scientific basis. In: Houghton JT et al (eds) Contribution of working group I to the third assessment report of the Intergovernmental Panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  19. Intergovernmental Panel on Climate Change (2007) Climate change 2007: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  20. Jansen E, Overpeck J (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor M, Miller HL Jr, Chen Z (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 434–498Google Scholar
  21. Jackson CS, Broccoli AJ (2003) Orbital forcing of Arctic climate: mechanisms of climate response and implications for continental glaciation. Clim Dyn 21:539–557CrossRefGoogle Scholar
  22. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM J, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and Millennial Antarctic climate variability over the past 800,000 years. Science 317:793–797CrossRefGoogle Scholar
  23. Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski K, Geirsdóttir A, Hu FS, Jennings AE, Kaplan MR, Kerwin MW, Lozhkin AV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, Rühland K, Smol KP, Steig EJ, Wolfe BB (2004) Holocene thermal maximum in the western Arctic (0–180°W). Quat Sci Rev 23:529–560CrossRefGoogle Scholar
  24. Kitchell JA, Pena D (1984) Periodicity of extinctions in the geologic past: deterministic versus stochastic explanations. Science 226:689–692CrossRefGoogle Scholar
  25. Khaliq MN, Ouarda TBMJ, Ondo J-C, Gachon P, Bobee B (2006) Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review. J Hydrol 329:534–552CrossRefGoogle Scholar
  26. Labat D (2005) Recent advances in wavelet analysis: Part I, A review of concept. J Hydrol 314:275–288CrossRefGoogle Scholar
  27. Labat D (2008) Wavelet analysis of the annual discharge records of the world’s largest rivers. Adv Water Resour 31:109–117CrossRefGoogle Scholar
  28. Langway Jr CC, Oeschger H, Dansgaard W (1985). Greenland ice core: geophysics, geochemistry and environment: geophysical monographs, vol 33. American Geophysics Union, Washington D.CGoogle Scholar
  29. LeGrande AN, Schmidt GA, Shindell DT, Field CV, Miller RL, Koch DM, Faluvegi G, Hoffmann G (2006) Consistent simulations of multiple proxy responses to an abrupt climate change event. PNAS 103(4):837–842CrossRefGoogle Scholar
  30. Lorenz SJ, Lohmann G (2004) Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene. Clim Dyn 23:727–743CrossRefGoogle Scholar
  31. Liu Z, Xu J, Tian J, Wang P (2003) Calcium carbonate pump during quaternary glacial cycles in the South China Sea. Chin Sci Bull 48(17):1862–1869CrossRefGoogle Scholar
  32. McGuffie K, Henderson-Sellers A (2001) Forty years of numerical climate modeling. Int J Climatol 21:1067–1109CrossRefGoogle Scholar
  33. Narayanan V, Anirudhan S, Grottoli AG (2007) Oxygen and carbon isotope analysis of the Miocene limestone of Kerala and its implications to palaeoclimate and its depositional setting. Curr Sci 93(8):1155–1159Google Scholar
  34. North Greenland Ice Core Project (NGICP) Members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151CrossRefGoogle Scholar
  35. Paillard D (2001) Glacial cycles: toward a new paradigm. Rev Geophys 39(3):325–346CrossRefGoogle Scholar
  36. Peterson LC, Haug GH, Hughen KA, Röhl U (2000) Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290:1947–1950CrossRefGoogle Scholar
  37. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis J, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov V, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  38. Pielke R Jr, Prins G, Rayner S, Sarewitz D (2007) Lifting the taboo on adaptation. Nature 445:597–598CrossRefGoogle Scholar
  39. Prokoph A, Veizer J (1999) Trends, cycles and nonstationarities in isotope signals of phanerozoic seawater. Chem Geol 161:225–240CrossRefGoogle Scholar
  40. Prokoph A, Fowler AD, Patterson RT (2001) Periodically forced self-organization in the long-term evolution of planktic foraminifera. Can J Earth Sci 38(2):293–308CrossRefGoogle Scholar
  41. Rajagopalan B, Lall U (1998) Interannual variability in western US precipitation. J Hydrol 210:51–67CrossRefGoogle Scholar
  42. Rasbury ET, Hanson GN, Meyers WJ, Holt WE, Goldstein RH, Saller AH (1998) U-Pb dates of paleosols; constraints on late Paleozoic cycle durations and boundary ages. Geology 26(5):403–406CrossRefGoogle Scholar
  43. Ren L, Linsley BK, Wellington GM, Schrag DP, Hoeghbuldberg O (2002) Deconvolving the 18O seawater component from subseasonal coral 18O and Sr/Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997. Geochim Cosmochim Acta 67(9):1609–1621CrossRefGoogle Scholar
  44. Rohde RA, Muller RA (2005) Cycles in fossil diversity. Nature 434:208–210CrossRefGoogle Scholar
  45. Sepkoski JJ Jr (1989) Periodicity in extinction and the problem of catastrophism in the history of life. J Geol Soc 146(1):7–19CrossRefGoogle Scholar
  46. Siegenthaler U, Stocker TF, Monnin E, Lüthi D, Schwander J, Stauffer B, Raynaud D, Barnola JM, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle–climate relationship during the Late Pleistocene. Science 310:1313–1317CrossRefGoogle Scholar
  47. Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K, Flückiger J, Schwander J, Raynaud D, Masson-Delmotte V, Jouzel J (2005) Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 310:1317–1321Google Scholar
  48. Thackray GD (2001) Extensive early and middle Wisconsin glaciation on the western Olympic Peninsula, Washington, and the variability of pacific moisture delivery to the northwestern United States. Quat Res 55(3):257–270CrossRefGoogle Scholar
  49. Tiwari RK, Rao KNN (1998). Correlated variations and periodicity of global CO2, biological mass extinctions and extra-terrestrial bolide impacts over the past 250 million years and possible geodynamical implications. Geofizika, 15, UDC 56.017.4 + 551.583.7Google Scholar
  50. Trudinger C, Enting I, Etheridge D, Francey R, Rayner P (2005) The carbon cycle over the past 1000 years inferred from the inversion of ice core data. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Ecological Studies, vol 177. Springer, Heidelberg, pp 329–349Google Scholar
  51. van Hoof TB, Kaspers KA, Wagner F, van de WAL RSW, Kürschner WM, Visscher H (2005) Atmospheric CO2 during the 13th century AD: reconciliation of data from ice core measurements and stomatal frequency analysis. Tellus B 57(4):351–355CrossRefGoogle Scholar
  52. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88CrossRefGoogle Scholar
  53. Williams CN Jr, Menne MJ, Vose RS, Easterling DR (2007) United States Historical Climatology Network Monthly Temperature and Precipitation Data. ORNL/CDIAC-118, NDP-019. from the Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TennesseeGoogle Scholar
  54. Willis KJ, Niklas KJ (2004) The role of Quaternary environmental change in plant macroevolution: the exception or the rule? Phil Trans R Soc Lond B 359:159–172CrossRefGoogle Scholar
  55. Yang YJ, Murray DJ, Goodrich JA (2008) Water Resources Adaptation to Global Changes: Risk Management through Sustainable Infrastructure Planning and Management, Water Down Under 2008, Adelaide, AustraliaGoogle Scholar
  56. Yuan D, Cheng H, Edwards RL, Dykoski CA, Kelly MJ, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale JA, An Z, Cai Y (2004) Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304:575–578CrossRefGoogle Scholar
  57. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  58. Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hodell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ, McCarren H, Kroon D (2005) Rapid acidification of the Ocean during the Paleocene–Eocene thermal maximum. Science 308:1611–1615CrossRefGoogle Scholar
  59. Zheng J, Wang W-C, Ge Q, Man Z, Zhang P (2006) Precipitation variability and extreme events in eastern China during the past 1500 Years. Terr Atmos Ocean Sci 17(3):579–592Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Water Supply and Water Resources DivisionU.S. EPA, National Risk Management Research LaboratoryCincinnatiUSA

Personalised recommendations