Environmental Geology

, Volume 56, Issue 3–4, pp 741–752 | Cite as

Sulfation of calcitic and dolomitic lime mortars in the presence of diesel particulate matter

  • G. Cultrone
  • A. Arizzi
  • E. Sebastián
  • C. Rodriguez-Navarro
Special Issue


The sulfation of four types of calcitic and dolomitic lime mortars exposed to SO2 in the presence of particulate matter from diesel vehicle exhaust emissions has been investigated. The binders mineralogy and mortars texture are the main factors influencing the formation of deleterious sulfate salts. The type of binder also influences the pore size distribution and the total porosity of the mortars: for equal aggregate (quartz or dolomite), dolomitic lime mortars have smaller pores and higher porosity than calcitic ones. During the first 24 h exposure to SO2, calcitic lime mortars undergo a higher weight increase than dolomitic ones due to rapid formation of gypsum on their surface. However, at the end of the sulfation test (10 days), dolomitic mortars show a higher weight increase due to massive formation of epsomite and gypsum, which is facilitated by their higher porosity and the high reactivity of Mg phases in the porous and partially carbonated binder. Control samples (not covered with diesel particulate matter) also develop calcium and magnesium sulfates upon long term exposure to SO2. This is due to the presence of uncarbonated Ca and Mg hydroxides that promote SO2 fixation as sulfates. However, the amount and size of sulfate crystals are significantly smaller than those observed on samples covered with diesel particulate matter. These results show that diesel particulate matter enhances the sulfation of lime mortars and demonstrate that sulfation of dolomitic lime is an important mechanism for the in situ formation of highly soluble and deleterious hydrated magnesium sulfates (epsomite and hexahydrite). The use of dolomitic limes in the conservation of monuments exposed to air pollution in urban environments may therefore pose a significant risk.


Dolomitic Calcitic Lime mortar Air pollution Diesel particulate matter Sulfation Gypsum Epsomite 


  1. Abdel Aal EA, Rashad MM, El Shall H (2004) Crystallization of calcium sulphate dihydrate at different supersaturation ratios and different free sulphate concentrations. Cryst Res Technol 39:313CrossRefGoogle Scholar
  2. ASTM C88-90 (1997) Standard test method for soundness of aggregate by use of sodium sulfate or magnesium sulfate. Annual Book of ASTM Standard 4.2, pp 37–42Google Scholar
  3. Atzeni C, Massidda L, Sanna U (1996) Magnesian limes. Experimental contribution to interpreting historical data. Sci Tech Cult Herit 5:29–36Google Scholar
  4. Bläuer-Böhm C, Jägers E (1997) Analysis and recognition of dolomitic lime mortars. In: Béarat H, Fuchs M, Maggetti M, Pounier D (eds) Roman wall painting: materials, techniques, analysis and conservation. Proceedings of the international workshop. Fribourg, Switzerland, pp 223–235Google Scholar
  5. Boynton RS (1980) Chemistry and technology of lime and limestone. Wiley and Sons, New YorkGoogle Scholar
  6. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  7. Cazalla O, Rodriguez Navarro C, Sebastián E, Cultrone G, de la Torre MJ (2000) Aging of lime putty: the effect on traditional lime mortar carbonation. J Am Ceram Soc 83:1070–1076CrossRefGoogle Scholar
  8. Churakov SV, Ianuzzi M, Parrinello M (2004) Ab initio study of dehydroxilation–carbonation reaction on brucite surface. J Phys Chem B 108:11567–11574CrossRefGoogle Scholar
  9. Cowper AD (1927) Lime and lime mortars. Donhead, London; reprinted in 1998 by the Building Research Establishment Ltd, LondonGoogle Scholar
  10. Cultrone G, Rodriguez-Navarro C, Sebastián E (2004) Limestone and brick decay in simulated polluted atmosphere: the role of particulate matter. Air Pollution and Cultural Heritage. Balkema, Amsterdam, pp 141–145Google Scholar
  11. Cultrone G, Sebastián Pardo E, Ortega Huertas M (2005) Forced and natural carbonation of lime-based mortars with and without additives: mineralogical and textural changes. Cement Concrete Res 35:2278–2289CrossRefGoogle Scholar
  12. Degrise P, Elsen J, Waelkens M (2002) Study of ancient mortars from Sagalassos (Turkey) in view of their conservation. Cement Concrete Res 32:1457–1463CrossRefGoogle Scholar
  13. Del Monte M, Sabbioni C, Vittori O (1981) Airborne carbon particles and marble deterioration. Atmos Environ 15:645–652CrossRefGoogle Scholar
  14. Del Monte M, Sabbioni C, Vittori O (1984) Urban stone sulphation and oil-fires carbonaceous particles. Sci Total Environ 36:369–376CrossRefGoogle Scholar
  15. Elert K, Rodriguez-Navarro C, Sebastian Pardo E, Hansen E, Cazalla O (2002) Lime mortars for the conservation of historic buildings. Stud Conserv 47:62–75CrossRefGoogle Scholar
  16. Gauri KL, Holden GC (1981) Pollutant effects on stone monuments. The outcome can be predicted with reasonable certainty. Environ Sci Tech 15:386–390CrossRefGoogle Scholar
  17. Genestar C, Pons C (2002) Ancient covering plaster mortars from several convents and Islamic and Gothic palaces in Palma de Mallorca (Spain). Analytical characterisation. J Cult Herit 4:291–298CrossRefGoogle Scholar
  18. Goudie AS, Viles HA (1997) Salt weathering hazards. Wiley, LondonGoogle Scholar
  19. Grodten T, Steiger M, Dannecker W (1997) Effect of dolomite-containing mortar on the weathering of mottled sandstone—presentation of an application-related research method. In: Proceedings of the 13th internationale Baustofftagung, Weimar, vol 2, pp 959–965Google Scholar
  20. Hoffmann D, Schimmelwitz P, Rooss H (1977) Interaction of sulfur dioxide with lime plasters. In: Proceedings of the 2nd international symposium on the deterioration of building stones, Athens Nat. Techn. University, AthensGoogle Scholar
  21. Juling H, Kirchner D, Brüggerhoff S, Linnow K, Steiger M, El Jarad A, Gülker G (2004) Salt damage of porous materials: a combined theoretical and experimental approach. In: Kwiatkowski D, Löfvendahl R (eds) 10th International congress on deterioration and conservation of stone, vol 1. Stockholm ( Sweden), pp 187–194Google Scholar
  22. Kakaraniya S, Kari C, Verma R, Mehra A (2007) Gas absorption in slurries of fine particles: SO2–Mg(OH) 2-MgSO3 system. Ind Eng Chem Res 46:1904–1913CrossRefGoogle Scholar
  23. Königsberger E, Königsberger LC, Gamsjäger H (1999) Low-temperature thermodynamic model for the system Na2CO3–MgCO3–CaCO3–H2O. Geochim Cosmochim Acta 63:3105–3119CrossRefGoogle Scholar
  24. Lanas J, Álvarez JL (2004) Dolomitic lime: thermal decomposition of nesquehonite. Thermochim Acta 421:123–132CrossRefGoogle Scholar
  25. Lanas J, Pérez Bernal JL, Bello MA, Álvarez JI (2006a) Mechanical properties of masonry repair dolomitic lime-based mortars. Cement Concrete Res 36:951–960CrossRefGoogle Scholar
  26. Lanas J, Sirera R, Alvarez JI (2006b) Study of the mechanical behavior of masonry repair lime-based mortars cured and exposed under different conditions. Cement Concrete Res 36:961–970CrossRefGoogle Scholar
  27. Laue S, Siedel H (2003) Alveolarverwitterung der Sandsteine an der Dorfkirche Leuba, Teilbericht: Gesteinsmaterial, Verwitterung und Salzbelastung. Abschlussbericht der Deutschen Bundesstiftung Umwelt, AZ 18727: Entwicklung einer Technologie zur Restaurierung umweltbedingter Schäden durch Alveoloarverwitterung an Sandsteinen am Beispiel der Dorfkirche Leuba, Deutsche Bundesstiftung Umwelt, 34 S., OsnabrückGoogle Scholar
  28. Lawrence RMH, Mays TJ, Walker P, D’Ayala D (2006) Determination of carbonation profiles in non-hydraulic lime mortars using thermogravimetric analysis. Thermochim Acta 444:179–189CrossRefGoogle Scholar
  29. Lawrence RMH, Mays TJ, Rigby SP, Walker P, D’Ayala D (2007) Effects of carbonation on the pore structure of non-hydraulic lime mortars. Cement Concrete Res 37:1059–1069CrossRefGoogle Scholar
  30. Lubelli B, Van Hees RPJ, Huinink HP, Groot CJWP (2006) Irreversible dilation of NaCl contamined lime–cement mortar due to crystallization cycles. Cement Concrete Res 36:678–687CrossRefGoogle Scholar
  31. Maravelaki Kalaitzaki P, Bakolas A, Moropoulou A (2003) Physico-chemical study of Cretan ancient mortars. Cement Concrete Res 33:651–661CrossRefGoogle Scholar
  32. Martín JD (2004) XPowder. A software package for powder X-ray diffraction analysis. Lgl. Dep. GR 1001/04Google Scholar
  33. Martínez Ramirez S, Puertas F, Blanco Varela MT, Thompson GE (1997) Studies on degradation of lime mortars in atmospheric simulation chambers. Cement Concrete Res 27:777–784CrossRefGoogle Scholar
  34. Martínez Ramirez S, Puertas F, Blanco Varela MT, Thompson GE (1998) Effect of dry deposition of pollutants on the degradation of lime mortars with sepiolite. Cement Concrete Res 28:125–133CrossRefGoogle Scholar
  35. Montoya C, Lanas J, Arandigoyen M, Navarro I, Garcia Casado PJ, Alvarez JI (2003) Study of ancient dolomitic mortars of the church of Santa Maria de Zamarce in Navarra (Spain): comparison with simulated standards. Thermochim Acta 398:107–122CrossRefGoogle Scholar
  36. Moreno F, Vilela SAG, Antunes ASG, Alves CAS (2006) Capillary-rising salt pollution and granitic stone erosive decay in the parish church of Torre del Moncorvo (NE Portugal). Implications for conservation strategy. J Cult Herit 7:56–66CrossRefGoogle Scholar
  37. Moropoulou A, Cakmak AS, Biscontin G, Bakolas A, Zendri E (2002) Advanced Byzantine cement based composites resisting earthquake stresses: the crushed brick/lime mortars of Justinian’s Hagia Sophia. Constr Build Mat 16:543–552CrossRefGoogle Scholar
  38. Moropoulou A, Bakolas A, Anagnostopoulou S (2005) Composite materials in ancient structures. Cement Concrete Comp 27:295–300CrossRefGoogle Scholar
  39. Niesel K, Schimmelwitz P (1971) Hardening and weathering processes of dolomite lime mortars. Tonindustrie-Zeitung Keramische Rundschau 95:153–161Google Scholar
  40. Pérez Bernal JL, Bello López MA (2004) Dióxido de azufre. Química atmosférica y destrucción del patrimonio. Fundación El Monte, SevilleGoogle Scholar
  41. Pérez Bernal JL, Bello López MA, Álvarez Gelindo JI (2004) The effect of relative humidity and foreign matter on the reaction between sulphur dioxide and calcium carbonate. In: Kwiatkowski D, Löfvendahl R (eds) Proceedings of the 10th international congress on deterioration and conservation of stone, vol 1. Stockholm (Sweden), pp 51–58Google Scholar
  42. Price CA (1996) Stone conservation: an overview of current research. The Getty Conservation Institute, Los AngelesGoogle Scholar
  43. Rodriguez-Navarro C, Dohene E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Proc Land 24:191–209CrossRefGoogle Scholar
  44. Rodriguez-Navarro C, Sebastian E (1996) Role of particulate matter form vehicle exhaust on porous building stones (limestone) sulfation. Sci Total Environ 187:79–91CrossRefGoogle Scholar
  45. Rodriguez-Navarro C, Hansen E, Ginell WS (1998) Calcium hydroxide crystal evolution upon aging of lime putty. J Am Ceram Soc 83:3032–3034Google Scholar
  46. Rodriguez-Navarro C, Cazalla O, Elert K, Sebastian E (2002) Liesegang pattern development in carbonating traditional lime mortars. Proc R Soc London A 458:261–2273Google Scholar
  47. Rodriguez-Navarro C, Ruiz-Agudo E, Ortega-Huertas M, Hansen E (2005) Nanostructure and irreversible colloidal behavior of Ca(OH)2: implications in cultural heritage conservation. Langmuir 21:10948–10957CrossRefGoogle Scholar
  48. Ruiz-Agudo E (2007) Prevención del daño debido a la cristalización de sales en el patrimonio histórico construido mediante el uso de inhibidores de la cristalización. Ph.D. thesis, University of GranadaGoogle Scholar
  49. Ruiz-Agudo E, Mees F, Jacobs P, Rodriguez-Navarro C (2007a) The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environ Geol 52:269–281CrossRefGoogle Scholar
  50. Ruiz-Agudo E, Martín Ramos JD, Rodríguez-Navarro C (2007b) Mechanisms and kinetics of dehydration of epsomite crystals formed in the presence of organic additives. J Phys Chem B 111:41–52CrossRefGoogle Scholar
  51. Sabbioni C, Zappia G, Gobbi G, Pauri MG (1993) Deterioration of ancient and modern building materials due to environmental factors. In: Brebbia CA, Frewer RJB (eds) Structural repair and maintenance of historical Buildings. Computational Mechanics Publications, Southampton, Boston, pp 235–242Google Scholar
  52. Sabbioni C, Zappia G, Ghedini N, Gobbi G, Favoni O (1998) Black crusts on ancient mortars. Atmos Environ 32:215–223CrossRefGoogle Scholar
  53. Saiz Jiménez C, Brimblecombe P, Camuffo D, Lefèvre RA, Van Grieken R (2004) Damage caused to European monuments by air pollution: assessment and preventive measures. In: Air pollution and cultural heritage. Balkema Publishers, Rotterdam, pp 91–109Google Scholar
  54. Siedel H (2000) Effects of salts on wall paintings and rendering in the Augustusburg Castle (Saxony). In: Proceedings of the 6th international congress on applied mineralogy, Göttingen, vol 2. Balkema, Rotterdam, pp 1035–1038Google Scholar
  55. Simão J, Ruiz-Agudo E, Rodriguez-Navarro C (2006) Effects of particulate matter from gasoline and diesel vehicle exhaust emissions on silicate stones sulfation. Atmos Environ 40:6905–6917CrossRefGoogle Scholar
  56. Sunagawa I (1981) Characteristics of crystal growth in nature as seen from the morphology of mineral crystals. Bull Mineralogie 104:81–87Google Scholar
  57. Tambe S, Gauri KL, Li S, Cobourn WG (1991) Kinetic study of SO2 reaction with dolomite. Environ Sci Tech 25:2071–2075CrossRefGoogle Scholar
  58. Titiz Sargut S, Sayan P, Avci B (2007) Influence of citric acid on calcium sulfate dihidrate crystallization in aqueous media. Crystal Res Tech 42:119–126CrossRefGoogle Scholar
  59. Van Balen K (2005) Carbonation reaction of lime, kinetics at ambient temperature. Cement Concrete Res 35:647–657CrossRefGoogle Scholar
  60. Vecchio S, La Ginestra A, Frezza A, Ferragina C (1993) The use of thermoanalytical techniques in the characterization of ancient mortars. Thermochim Acta 227:215–223CrossRefGoogle Scholar
  61. Winkler EM (1973) Stone: properties, durability in man’s environment. Springer, New YorkGoogle Scholar
  62. Yates T (2003) Mechanism of air pollution damage to brick, concrete and mortar. In Brimblecombe P (ed) The effects of air pollution on the built heritage. Air pollution reviews, vol 2. Imperial College Press, London, pp 107–132Google Scholar
  63. Zappia G, Sabbioni C, Pauri MG, Gobbi G (1992) Effect on SO2-riched atmosphere on ancient and modern building materials. Mater Eng 3:445–458Google Scholar
  64. Zappia G, Sabbioni C, Pauri MG, Gobbi G (1994) Mortar damage due to airborne sulfur compounds in a simulation chamber. Mater Struct 27:469–473CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • G. Cultrone
    • 1
  • A. Arizzi
    • 1
  • E. Sebastián
    • 1
  • C. Rodriguez-Navarro
    • 1
  1. 1.Department of Mineralogy and PetrologyUniversity of GranadaGranadaSpain

Personalised recommendations