Skip to main content
Log in

Sulfation of calcitic and dolomitic lime mortars in the presence of diesel particulate matter

  • Special Issue
  • Published:
Environmental Geology

Abstract

The sulfation of four types of calcitic and dolomitic lime mortars exposed to SO2 in the presence of particulate matter from diesel vehicle exhaust emissions has been investigated. The binders mineralogy and mortars texture are the main factors influencing the formation of deleterious sulfate salts. The type of binder also influences the pore size distribution and the total porosity of the mortars: for equal aggregate (quartz or dolomite), dolomitic lime mortars have smaller pores and higher porosity than calcitic ones. During the first 24 h exposure to SO2, calcitic lime mortars undergo a higher weight increase than dolomitic ones due to rapid formation of gypsum on their surface. However, at the end of the sulfation test (10 days), dolomitic mortars show a higher weight increase due to massive formation of epsomite and gypsum, which is facilitated by their higher porosity and the high reactivity of Mg phases in the porous and partially carbonated binder. Control samples (not covered with diesel particulate matter) also develop calcium and magnesium sulfates upon long term exposure to SO2. This is due to the presence of uncarbonated Ca and Mg hydroxides that promote SO2 fixation as sulfates. However, the amount and size of sulfate crystals are significantly smaller than those observed on samples covered with diesel particulate matter. These results show that diesel particulate matter enhances the sulfation of lime mortars and demonstrate that sulfation of dolomitic lime is an important mechanism for the in situ formation of highly soluble and deleterious hydrated magnesium sulfates (epsomite and hexahydrite). The use of dolomitic limes in the conservation of monuments exposed to air pollution in urban environments may therefore pose a significant risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel Aal EA, Rashad MM, El Shall H (2004) Crystallization of calcium sulphate dihydrate at different supersaturation ratios and different free sulphate concentrations. Cryst Res Technol 39:313

    Article  Google Scholar 

  • ASTM C88-90 (1997) Standard test method for soundness of aggregate by use of sodium sulfate or magnesium sulfate. Annual Book of ASTM Standard 4.2, pp 37–42

  • Atzeni C, Massidda L, Sanna U (1996) Magnesian limes. Experimental contribution to interpreting historical data. Sci Tech Cult Herit 5:29–36

    Google Scholar 

  • Bläuer-Böhm C, Jägers E (1997) Analysis and recognition of dolomitic lime mortars. In: Béarat H, Fuchs M, Maggetti M, Pounier D (eds) Roman wall painting: materials, techniques, analysis and conservation. Proceedings of the international workshop. Fribourg, Switzerland, pp 223–235

  • Boynton RS (1980) Chemistry and technology of lime and limestone. Wiley and Sons, New York

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  • Cazalla O, Rodriguez Navarro C, Sebastián E, Cultrone G, de la Torre MJ (2000) Aging of lime putty: the effect on traditional lime mortar carbonation. J Am Ceram Soc 83:1070–1076

    Article  Google Scholar 

  • Churakov SV, Ianuzzi M, Parrinello M (2004) Ab initio study of dehydroxilation–carbonation reaction on brucite surface. J Phys Chem B 108:11567–11574

    Article  Google Scholar 

  • Cowper AD (1927) Lime and lime mortars. Donhead, London; reprinted in 1998 by the Building Research Establishment Ltd, London

  • Cultrone G, Rodriguez-Navarro C, Sebastián E (2004) Limestone and brick decay in simulated polluted atmosphere: the role of particulate matter. Air Pollution and Cultural Heritage. Balkema, Amsterdam, pp 141–145

    Google Scholar 

  • Cultrone G, Sebastián Pardo E, Ortega Huertas M (2005) Forced and natural carbonation of lime-based mortars with and without additives: mineralogical and textural changes. Cement Concrete Res 35:2278–2289

    Article  Google Scholar 

  • Degrise P, Elsen J, Waelkens M (2002) Study of ancient mortars from Sagalassos (Turkey) in view of their conservation. Cement Concrete Res 32:1457–1463

    Article  Google Scholar 

  • Del Monte M, Sabbioni C, Vittori O (1981) Airborne carbon particles and marble deterioration. Atmos Environ 15:645–652

    Article  Google Scholar 

  • Del Monte M, Sabbioni C, Vittori O (1984) Urban stone sulphation and oil-fires carbonaceous particles. Sci Total Environ 36:369–376

    Article  Google Scholar 

  • Elert K, Rodriguez-Navarro C, Sebastian Pardo E, Hansen E, Cazalla O (2002) Lime mortars for the conservation of historic buildings. Stud Conserv 47:62–75

    Article  Google Scholar 

  • Gauri KL, Holden GC (1981) Pollutant effects on stone monuments. The outcome can be predicted with reasonable certainty. Environ Sci Tech 15:386–390

    Article  Google Scholar 

  • Genestar C, Pons C (2002) Ancient covering plaster mortars from several convents and Islamic and Gothic palaces in Palma de Mallorca (Spain). Analytical characterisation. J Cult Herit 4:291–298

    Article  Google Scholar 

  • Goudie AS, Viles HA (1997) Salt weathering hazards. Wiley, London

    Google Scholar 

  • Grodten T, Steiger M, Dannecker W (1997) Effect of dolomite-containing mortar on the weathering of mottled sandstone—presentation of an application-related research method. In: Proceedings of the 13th internationale Baustofftagung, Weimar, vol 2, pp 959–965

  • Hoffmann D, Schimmelwitz P, Rooss H (1977) Interaction of sulfur dioxide with lime plasters. In: Proceedings of the 2nd international symposium on the deterioration of building stones, Athens Nat. Techn. University, Athens

  • Juling H, Kirchner D, Brüggerhoff S, Linnow K, Steiger M, El Jarad A, Gülker G (2004) Salt damage of porous materials: a combined theoretical and experimental approach. In: Kwiatkowski D, Löfvendahl R (eds) 10th International congress on deterioration and conservation of stone, vol 1. Stockholm ( Sweden), pp 187–194

  • Kakaraniya S, Kari C, Verma R, Mehra A (2007) Gas absorption in slurries of fine particles: SO2–Mg(OH) 2-MgSO3 system. Ind Eng Chem Res 46:1904–1913

    Article  Google Scholar 

  • Königsberger E, Königsberger LC, Gamsjäger H (1999) Low-temperature thermodynamic model for the system Na2CO3–MgCO3–CaCO3–H2O. Geochim Cosmochim Acta 63:3105–3119

    Article  Google Scholar 

  • Lanas J, Álvarez JL (2004) Dolomitic lime: thermal decomposition of nesquehonite. Thermochim Acta 421:123–132

    Article  Google Scholar 

  • Lanas J, Pérez Bernal JL, Bello MA, Álvarez JI (2006a) Mechanical properties of masonry repair dolomitic lime-based mortars. Cement Concrete Res 36:951–960

    Article  Google Scholar 

  • Lanas J, Sirera R, Alvarez JI (2006b) Study of the mechanical behavior of masonry repair lime-based mortars cured and exposed under different conditions. Cement Concrete Res 36:961–970

    Article  Google Scholar 

  • Laue S, Siedel H (2003) Alveolarverwitterung der Sandsteine an der Dorfkirche Leuba, Teilbericht: Gesteinsmaterial, Verwitterung und Salzbelastung. Abschlussbericht der Deutschen Bundesstiftung Umwelt, AZ 18727: Entwicklung einer Technologie zur Restaurierung umweltbedingter Schäden durch Alveoloarverwitterung an Sandsteinen am Beispiel der Dorfkirche Leuba, Deutsche Bundesstiftung Umwelt, 34 S., Osnabrück

  • Lawrence RMH, Mays TJ, Walker P, D’Ayala D (2006) Determination of carbonation profiles in non-hydraulic lime mortars using thermogravimetric analysis. Thermochim Acta 444:179–189

    Article  Google Scholar 

  • Lawrence RMH, Mays TJ, Rigby SP, Walker P, D’Ayala D (2007) Effects of carbonation on the pore structure of non-hydraulic lime mortars. Cement Concrete Res 37:1059–1069

    Article  Google Scholar 

  • Lubelli B, Van Hees RPJ, Huinink HP, Groot CJWP (2006) Irreversible dilation of NaCl contamined lime–cement mortar due to crystallization cycles. Cement Concrete Res 36:678–687

    Article  Google Scholar 

  • Maravelaki Kalaitzaki P, Bakolas A, Moropoulou A (2003) Physico-chemical study of Cretan ancient mortars. Cement Concrete Res 33:651–661

    Article  Google Scholar 

  • Martín JD (2004) XPowder. A software package for powder X-ray diffraction analysis. Lgl. Dep. GR 1001/04

  • Martínez Ramirez S, Puertas F, Blanco Varela MT, Thompson GE (1997) Studies on degradation of lime mortars in atmospheric simulation chambers. Cement Concrete Res 27:777–784

    Article  Google Scholar 

  • Martínez Ramirez S, Puertas F, Blanco Varela MT, Thompson GE (1998) Effect of dry deposition of pollutants on the degradation of lime mortars with sepiolite. Cement Concrete Res 28:125–133

    Article  Google Scholar 

  • Montoya C, Lanas J, Arandigoyen M, Navarro I, Garcia Casado PJ, Alvarez JI (2003) Study of ancient dolomitic mortars of the church of Santa Maria de Zamarce in Navarra (Spain): comparison with simulated standards. Thermochim Acta 398:107–122

    Article  Google Scholar 

  • Moreno F, Vilela SAG, Antunes ASG, Alves CAS (2006) Capillary-rising salt pollution and granitic stone erosive decay in the parish church of Torre del Moncorvo (NE Portugal). Implications for conservation strategy. J Cult Herit 7:56–66

    Article  Google Scholar 

  • Moropoulou A, Cakmak AS, Biscontin G, Bakolas A, Zendri E (2002) Advanced Byzantine cement based composites resisting earthquake stresses: the crushed brick/lime mortars of Justinian’s Hagia Sophia. Constr Build Mat 16:543–552

    Article  Google Scholar 

  • Moropoulou A, Bakolas A, Anagnostopoulou S (2005) Composite materials in ancient structures. Cement Concrete Comp 27:295–300

    Article  Google Scholar 

  • Niesel K, Schimmelwitz P (1971) Hardening and weathering processes of dolomite lime mortars. Tonindustrie-Zeitung Keramische Rundschau 95:153–161

    Google Scholar 

  • Pérez Bernal JL, Bello López MA (2004) Dióxido de azufre. Química atmosférica y destrucción del patrimonio. Fundación El Monte, Seville

    Google Scholar 

  • Pérez Bernal JL, Bello López MA, Álvarez Gelindo JI (2004) The effect of relative humidity and foreign matter on the reaction between sulphur dioxide and calcium carbonate. In: Kwiatkowski D, Löfvendahl R (eds) Proceedings of the 10th international congress on deterioration and conservation of stone, vol 1. Stockholm (Sweden), pp 51–58

  • Price CA (1996) Stone conservation: an overview of current research. The Getty Conservation Institute, Los Angeles

    Google Scholar 

  • Rodriguez-Navarro C, Dohene E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Proc Land 24:191–209

    Article  Google Scholar 

  • Rodriguez-Navarro C, Sebastian E (1996) Role of particulate matter form vehicle exhaust on porous building stones (limestone) sulfation. Sci Total Environ 187:79–91

    Article  Google Scholar 

  • Rodriguez-Navarro C, Hansen E, Ginell WS (1998) Calcium hydroxide crystal evolution upon aging of lime putty. J Am Ceram Soc 83:3032–3034

    Google Scholar 

  • Rodriguez-Navarro C, Cazalla O, Elert K, Sebastian E (2002) Liesegang pattern development in carbonating traditional lime mortars. Proc R Soc London A 458:261–2273

    Google Scholar 

  • Rodriguez-Navarro C, Ruiz-Agudo E, Ortega-Huertas M, Hansen E (2005) Nanostructure and irreversible colloidal behavior of Ca(OH)2: implications in cultural heritage conservation. Langmuir 21:10948–10957

    Article  Google Scholar 

  • Ruiz-Agudo E (2007) Prevención del daño debido a la cristalización de sales en el patrimonio histórico construido mediante el uso de inhibidores de la cristalización. Ph.D. thesis, University of Granada

  • Ruiz-Agudo E, Mees F, Jacobs P, Rodriguez-Navarro C (2007a) The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environ Geol 52:269–281

    Article  Google Scholar 

  • Ruiz-Agudo E, Martín Ramos JD, Rodríguez-Navarro C (2007b) Mechanisms and kinetics of dehydration of epsomite crystals formed in the presence of organic additives. J Phys Chem B 111:41–52

    Article  Google Scholar 

  • Sabbioni C, Zappia G, Gobbi G, Pauri MG (1993) Deterioration of ancient and modern building materials due to environmental factors. In: Brebbia CA, Frewer RJB (eds) Structural repair and maintenance of historical Buildings. Computational Mechanics Publications, Southampton, Boston, pp 235–242

  • Sabbioni C, Zappia G, Ghedini N, Gobbi G, Favoni O (1998) Black crusts on ancient mortars. Atmos Environ 32:215–223

    Article  Google Scholar 

  • Saiz Jiménez C, Brimblecombe P, Camuffo D, Lefèvre RA, Van Grieken R (2004) Damage caused to European monuments by air pollution: assessment and preventive measures. In: Air pollution and cultural heritage. Balkema Publishers, Rotterdam, pp 91–109

  • Siedel H (2000) Effects of salts on wall paintings and rendering in the Augustusburg Castle (Saxony). In: Proceedings of the 6th international congress on applied mineralogy, Göttingen, vol 2. Balkema, Rotterdam, pp 1035–1038

  • Simão J, Ruiz-Agudo E, Rodriguez-Navarro C (2006) Effects of particulate matter from gasoline and diesel vehicle exhaust emissions on silicate stones sulfation. Atmos Environ 40:6905–6917

    Article  Google Scholar 

  • Sunagawa I (1981) Characteristics of crystal growth in nature as seen from the morphology of mineral crystals. Bull Mineralogie 104:81–87

    Google Scholar 

  • Tambe S, Gauri KL, Li S, Cobourn WG (1991) Kinetic study of SO2 reaction with dolomite. Environ Sci Tech 25:2071–2075

    Article  Google Scholar 

  • Titiz Sargut S, Sayan P, Avci B (2007) Influence of citric acid on calcium sulfate dihidrate crystallization in aqueous media. Crystal Res Tech 42:119–126

    Article  Google Scholar 

  • Van Balen K (2005) Carbonation reaction of lime, kinetics at ambient temperature. Cement Concrete Res 35:647–657

    Article  Google Scholar 

  • Vecchio S, La Ginestra A, Frezza A, Ferragina C (1993) The use of thermoanalytical techniques in the characterization of ancient mortars. Thermochim Acta 227:215–223

    Article  Google Scholar 

  • Winkler EM (1973) Stone: properties, durability in man’s environment. Springer, New York

    Google Scholar 

  • Yates T (2003) Mechanism of air pollution damage to brick, concrete and mortar. In Brimblecombe P (ed) The effects of air pollution on the built heritage. Air pollution reviews, vol 2. Imperial College Press, London, pp 107–132

  • Zappia G, Sabbioni C, Pauri MG, Gobbi G (1992) Effect on SO2-riched atmosphere on ancient and modern building materials. Mater Eng 3:445–458

    Google Scholar 

  • Zappia G, Sabbioni C, Pauri MG, Gobbi G (1994) Mortar damage due to airborne sulfur compounds in a simulation chamber. Mater Struct 27:469–473

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Spanish Government under contract MAT2006-00578, and the research group NRM-179 (Junta de Andalucía, Spain). We thank the personnel of the CIC (UGR) for their help with FESEM and TG analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cultrone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cultrone, G., Arizzi, A., Sebastián, E. et al. Sulfation of calcitic and dolomitic lime mortars in the presence of diesel particulate matter. Environ Geol 56, 741–752 (2008). https://doi.org/10.1007/s00254-008-1379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-008-1379-9

Keywords

Navigation