Environmental Geology

, Volume 56, Issue 3–4, pp 729–740 | Cite as

Laboratory simulation showing the influence of salt efflorescence on the weathering of composite building materials

  • G. Cultrone
  • E. Sebastián
Special Issue


A common decay scenario in old and new buildings was simulated: the effects on masonry structures of salt efflorescence or subefflorescence produced by the rise of saline solution. Eight different types of masonry wall each made up of a combination of different construction materials (brick, calcarenite and four types of mortar were combined as follows: pure lime mortar, mortar + air entraining agent, mortar + pozzolana, mortar + air entraining agent + pozzolana) have been tested. These materials have different textures (strong anisotropy in brick, irregular-shaped pores in calcarenite, retraction fissures or rounded pores in mortars which also show a reduction of porosity along the contact area with the stone), different hydric behaviours (under total immersion brick + mortar specimens absorb water faster than calcarenite + mortar specimens) and different pore size distribution (brick shows unimodal pore distribution, whereas calcarenite and mortars are bimodal). In the salt weathering test, mortars interlayered with masonry blocks did not act as sacrificial layers. In fact, they allowed salts to rise through them and crystallize on the brick or calcarenite pieces causing the masonry structure to decay. Only the addition of an air-entraining agent partially hindered the capillary rise of the salt-laden solutions.


Masonry walls Efflorescence and subefflorescence Porosity Weathering 



This research has been supported by a Marie Curie Fellowship of the European Community Programme “Energy, Environment and Sustainable Development” under contract number EVK4-CT-2002-50006, the Research Group RNM179 of the Junta de Andalucía and the Research Project DGI MAT2000-06804. We thank the Centro de Instrumentación Científica of the Universidad de Granada for technical assistance during FESEM analyses and Nigel Walkington for the translation of the manuscript.


  1. Benavente D, García del Cura MA, Ordóñez S (2003) Salt influence on evaporation from porous building rocks. Construct Build Mater 17:113–122CrossRefGoogle Scholar
  2. Benavente D, García del Cura MA, Fort R, Ordóñez S (2004) Durability estimation of porous building stones from pore structure and strength. Eng Geol 74:113–127CrossRefGoogle Scholar
  3. Benavente D, Martínez Martínez J, Cueto N, García del Cura MA (2007) Salt weathering in dual-porosity building dolostones. Eng Geol 94:215–226CrossRefGoogle Scholar
  4. Binda L, Modena C, Baronio G, Abbaneo S (1997) Repair and investigation techniques for stone masonry walls. Construct Build Mater 11:133–142CrossRefGoogle Scholar
  5. Binda L, Saisi A, Tiraboschi C (2000) Investigation procedures for the diagnosis of historic masonries. Construct Build Mater 14:199–233CrossRefGoogle Scholar
  6. Cardell C, Delalieux F, Roumpopoulos K, Moropoulou A, Auger F, Van Griegen R (2003) Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Construct Build Mater 17:165–179CrossRefGoogle Scholar
  7. Charola AE (2004) Deterioration in historic buildings and monuments. Paper presented at the 10th International Congress on deterioration and conservation of stone, Stockholm (Sweden), vol 1, 3–14Google Scholar
  8. Charola AE (2000) Salts in the deterioration of porous materials: an overview. J Am Inst Conserv 39:327–343CrossRefGoogle Scholar
  9. Ciabach J, Skibinski S (1989) Analyses of the total salt content and control of salt removal from stone historical objects. Paper presented at the 1° Simposio Internazionale “La conservazione dei monumenti nel bacino del Mediterraneo”, Bari (Italy), pp 325–328Google Scholar
  10. Cooper TP, Dowding P, Lewis JO, Mulvin L, O’Brien P, Olley J, O’Daly G (1989) Contribution of calcium from limestone and mortar to the decay of granite walling. Paper presented at the European Symposium “Science, Technology and European Cultural Heritage, Bologna (Italy), pp 456–461Google Scholar
  11. Cultrone G, Rodríguez Navarro C, Sebastián E, Cazalla O, de la Torre MJ (2001) Carbonate and silicate phase reactions during ceramic firing. Eur J Mineral 13:621–634CrossRefGoogle Scholar
  12. Cultrone G, Sebastián E, Elert K, de la Torre MJ, Cazalla O, Rodríguez Navarro C (2004) Influence of mineralogy and firing temperature on porosity of bricks. J Eur Ceram Soc 24:547–564CrossRefGoogle Scholar
  13. Cultrone G, Sebastián E, Ortega Huertas M (2005) Forced and natural carbonation of lime-based mortars with and without additives: mineralogical and textural changes. Cem Concr Res 35:2278–2289CrossRefGoogle Scholar
  14. Cultrone G, Russo LG, Calabrò C, Urosevic M, Pezzino A (2008) Influence of pore system characteristics on limestone vulnerability: a laboratory study. Environ Geol (in press)Google Scholar
  15. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Classification of carbonate rocks. American Association of Petroleum Geologists Memoir (USA), pp 108–121Google Scholar
  16. Espinosa RM, Franke L, Deckelmann G (2008) Model for the mechanical stress due to the salt crystallization in porous materials. Constr Build Mater (in press)Google Scholar
  17. Evans IS (1970) Salt crystallization and rock weathering: a review. Revue de Geomorphologie dynamique 19:153–177Google Scholar
  18. Gonçalves TD, Pel L, Delgado Rodrigues J (2007) Drying of salt-contamined masonry: MRI laboratory monitoring. Environ Geol 52:293–302CrossRefGoogle Scholar
  19. Groot C, Bartos P, Huges J (1999) Historic mortars: characteristics and test concluding summary and state of the art. In: International Workshop on Historic Mortars. Paisley (UK), pp 443–454Google Scholar
  20. Grossi CM, Esbert RM (1994) Las sales solubles en el deterioro de rocas monumentales. Revisión Bibliográfica. Materiales de Construcción 44:15–29Google Scholar
  21. Hall C, Hoff WD (2002) Water transport in brick, stone and concrete. Spon Press, London, New YorkGoogle Scholar
  22. Haneef SJ, Dickinson C, Johnson JB, Thompson GE, Wood GC (1992) Simulation of the degradation of coupled stones by artificial acid rain. Stud Conserv 37:105–112CrossRefGoogle Scholar
  23. Hendry EA (2002) Masonry walls: materials and construction. Constr Build Mater 15:323–330CrossRefGoogle Scholar
  24. Kuchitsu N, Ishizaki T, Nishiura T (1999) Salt weathering of brick monuments in Ayutthaya, Thailand. Eng Geol 55:91–99CrossRefGoogle Scholar
  25. La Iglesia A, González V, López Acevedo V, Viedma C (1997) Salt crystallization in porous construction materials. I. Estimation of crystallization pressure. J Cryst Growth 177:111–118CrossRefGoogle Scholar
  26. Larbi JA (2004) Microscopy applied to the diagnosis of the deterioration of brick masonry. Constr Build Mater 18:299–307CrossRefGoogle Scholar
  27. Lawrence RM, Mays TJ, Rugby SP, Walter P, D’Ayala D (2007) Effects of carbonation on the pore structure of non-hydraulic lime mortars. Cem Concr Res 37:1059–1069CrossRefGoogle Scholar
  28. Linares Fernández L, Rodríguez Navarro C, Sebastián Pardo E, de la Torre López MJ, Cultrone G, Cazalla O (2002) Efecto de aditivos en la cristalización de sulfato sódico. Boletín de la Sociedad Española de Mineralogía 25A:49–50Google Scholar
  29. Lubelli B, Van Hess RPJ (2007) Effectiveness of crystallization inhibitors in preventing salt damage in building materials. J Cult Herit 8:223–234CrossRefGoogle Scholar
  30. Lubelli B, Van Hees RPJ, Groot GWP (2006a) Investigation on the behaviour of a restoration plaster applied on heavy salt loaded masonry. Constr Build Mater 20:691–699CrossRefGoogle Scholar
  31. Lubelli B, Van Hees RPJ, Groot GWP (2006b) Sodium chloride crystallization in a “salt transporting” restoration plaster. Cem Concr Res 36:1467–1474CrossRefGoogle Scholar
  32. Luque A, Cultrone G, Sebastián E, Cazalla O (2008) Evaluation of the effectiveness of treatment products in improving the durability of a bioclastic limestone (Granada, Spain). Materiales de Construcción (in press)Google Scholar
  33. Maravelaki Kaalitzaki P (2007) Hydraulic lime mortars with siloxane for waterproofing historic masonry. Cem Concr Res 37:283–290CrossRefGoogle Scholar
  34. Martín JD (2004) Using XPowder: a software package for powder X-ray diffraction analysis. Legal Deposit GR 1001/04, Spain
  35. Mendes N, Philippi PC (2005) A method for predicting heat and moisture transfer through multilayered walls based on temperature and moisture content gradients. Int J Heat Mass Transf 48:37–51CrossRefGoogle Scholar
  36. Moreno F, Vilela SAG, Antunes ASG, Alves CAS (2006) Capillary rising salt pollution and granitic stone erosive decay in the parish church of Torre del Moncorvo (NE Portugal). Implications for conservation strategy. J Cult Herit 7:56–66CrossRefGoogle Scholar
  37. Moropoulou A, Bakolas A, Moundoulas P, Aggelakopoulou E, Anagnostopoulou S (2005) Strength development and lime reaction in mortars for repairing historic masonries. Cem Concr Res 27:289–294CrossRefGoogle Scholar
  38. Neville A (2004) The confused world of sulphate attach on concrete. Cem Concr Res 34:1275–1296CrossRefGoogle Scholar
  39. NORMAL 29/88 (1988) Misura dell’indice di asciugamento (drying index). CNR-ICR, Roma (Italy)Google Scholar
  40. Petkovic J, Huinink HP, Pel L, Kopinga K, Van Hess RPJ (2007) Salt transport in plaster/substrate layers. Mater Struct 40:475–490CrossRefGoogle Scholar
  41. Poli T, Toniolo L, Valentini M, Bizzaro G, Melzi R, Tedoldi F, Cannazza G (2007) A portable NMR device for the evaluation of water presence in building materials. J Cult Herit 8:134–140CrossRefGoogle Scholar
  42. Price CA (1996) Stone conservation. An overview of current research. The Getty Conservation Institute, Santa Monica (USA)Google Scholar
  43. Pye K, Schiavon N (1989) Cause of sulphate attack on concrete, render and stone indicated by sulphur isotope ratios. Nature 342:663–664CrossRefGoogle Scholar
  44. Rodríguez Navarro C, Cultrone G, Sánchez Navas A, Sebastián E (2003) Dynamics of high-T muscovite to mullite transformation: a TEM study. Am Mineral 88:713–724Google Scholar
  45. Rodríguez Navarro C, Dohene E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Process Landf 24:191–209CrossRefGoogle Scholar
  46. Rodríguez Navarro C, Dohene E, Sebastián E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem Concr Res 30:1527–1534CrossRefGoogle Scholar
  47. Rodríguez Navarro C, Linares Fernández L, Dohene E, Sebastián E (2002) Effects of ferrocyanide ions on NaCl crystallization in porous stone. J Cryst Growth 243:503–516CrossRefGoogle Scholar
  48. Ruiz Agudo (2007) Prevención del daño debido a la cristalización de sales en el patrimonio histórico construido mediante el uso de inhibidores de la cristalización. PhD, University of Granada, SpainGoogle Scholar
  49. Scherer GW (1999) Crystallization in pores. Cem Concr Res 29:1347–1358CrossRefGoogle Scholar
  50. Schiavon N, Chiavari G, Schiavon G, Fabbri D (1995) Nature and decay effects of urban soiling on granitic building stones. Sci Total Environ 167:87–101CrossRefGoogle Scholar
  51. Steiger M (2005a) Crystal growth in porous materials. I: The crystallization pressure of large crystals. J Cryst Growth 282:455–469CrossRefGoogle Scholar
  52. Steiger M (2005b) Crystal growth in porous materials. II: influence of crystal size on the crystallization pressure. J Cryst Growth 282:470–481CrossRefGoogle Scholar
  53. UNE 80-301-87 (1987) Cementos. Definiciones, clasificación y especificaciones. Primer complemento. AENOR, Madrid (Spain)Google Scholar
  54. UNI-EN-1925 (2000) Metodi di prova per pietre naturali. Determinazione del coefficiente di assorbimento d’acqua per capillarità. CNR-ICR, Roma (Italy)Google Scholar
  55. UNI-EN-1936 (2007) Metodi di prova per pietre naturali. Determinazione della massa volumica reale e della massa volumica apparente, e della porosità totale e aperta. CNR-ICR, Roma (Italy)Google Scholar
  56. UNI-EN-13755 (2002) Metodi di prova per pietre naturali. Determinazione dell’assorbimento d’acqua a pressione atmosferica. CNR-ICR, Roma (Italy)Google Scholar
  57. Van TT, Beck K, Al-Mukhtar M (2007) Accelerated weathering tests on two highly porous limestones. Environ Geol 52:283–292CrossRefGoogle Scholar
  58. Van Hess RPJ, Brocken HJP (2004) Damage development to treated brick masonry in a long-term salt crystallisation test. Constr Build Mater 18:331–338CrossRefGoogle Scholar
  59. Veniale F, Setti M, Rodríguez Navarro C, Lodola S, Palestra W, Busetto A (2003) Thaumasite as decay product of cement mortar in brick masonry of a church near Venice. Cem Concr Compos 25:1123–1129CrossRefGoogle Scholar
  60. Watt D, Colston B (2000) Investigating the effects of humidity and salt crystallisation on medieval masonry. Build Environ 35:737–749CrossRefGoogle Scholar
  61. Winkler EM (1987) Weathering and weathering rates of natural stone. Environ Geol Water Sci 9:85–92CrossRefGoogle Scholar
  62. Winkler EM, Singer PC (1972) Crystallization pressure of salts in stone and concrete. Geol Soc Am Bull 83:3509–3514CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mineralogy and PetrologyUniversity of GranadaGranadaSpain

Personalised recommendations