Skip to main content
Log in

Magnetic measurements and pollutants of sediments from Cauvery and Palaru River, India

  • Original Article
  • Published:
Environmental Geology

Abstract

Rock-magnetic techniques have become a useful tool in environmental issues; in particular, magnetic studies constitute an alternative way to study pollution in different media. The present contribution focuses on magnetic parameters as pollution indicators, especially from their relationship with contents of heavy metals. The work was carried out in two Indian rivers located in Tamil Nadu, southern India. Several sediment samples were collected and studied in the laboratory using magnetic techniques, magnetic susceptibility, anhysteric remanent magnetization, isothermal remanent magnetization, and chemical techniques to determine contents of heavy metals. Magnetic mineralogy indicates the predominance of ferrimagnetic minerals; although magnetite-like minerals are the main magnetic carriers, antiferromagnetic minerals can be present as subordinate carriers. Concentration-dependent magnetic parameters revealed noticeable differences between both rivers, e.g. magnetic susceptibility is four times higher in Cauvery than in Palaru River. Moreover, such increase can be interpreted as “magnetic enhancement” and therefore related to the pollution status. This magnetic enhancement indicated a different pollutant contribution in both rivers, and also, a different spatial distribution along these rivers, where critical (or more polluted) sites were identified. On the other hand, univariate and multivariate statistical analyses—e.g. PCoordA, Multifactorial Analysis of distance, PCA and RDA—were examined, revealing a link between magnetic and chemical variables. Among magnetic parameters, the concentration-dependent magnetic parameters (e.g. magnetic susceptibility) seem to be the most relevant for this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson TW (1958) An introduction to multivariate statistical analysis. Wiley, New York

    Google Scholar 

  • Angulo E (1996) The Tomlinson pollution load index applied to heavy metal “Mussel-Watch” data: a useful index to assess coastal pollution. Sci Tot Environ 187:19–56

    Article  Google Scholar 

  • APHA, AWWA, WEF (1998) Standard methods for the examination of water and wastewater, 20th edn

  • Bartington Instruments Ltd. (1994) Operation manual. Environmental magnetic susceptibility—using the Bartington MS2 system. Chi Publishing, UK, 54 pp

  • Beckwith P, Ellis J, Revitt D, Oldfield F (1986) Heavy metal and magnetic relationships for urban source sediments. Phys Earth Planet Int 42:67–75

    Article  Google Scholar 

  • Bityukova L, Scholger R, Birke M (1999) Magnetic susceptibility as indicator of environmental pollution of soils in Tallin. Phys Chem Earth A 24(9):829–835

    Article  Google Scholar 

  • Boyko T, Scholger R, Stanjek H, MAGPROX TEAM (2004) Topsoil magnetic susceptibility mapping as a tool for pollution monitoring: repeatability of in-situ measurements. J Appl Geophys 55(3–4):249–259

    Article  Google Scholar 

  • Chan LS, Ng SL, Davis AM, Yim WWS, Yeung CH (2001) Magnetic properties and heavy-metal contents of contaminated seabed sediments of Penny’s bay, Hong Kong. Mar Pollut Bull 42(7):569–583

    Article  Google Scholar 

  • Chaparro MAE, Bidegain JC, Sinito AM, Gogorza CS, Jurado S (2003) Preliminary results of magnetic measurements on stream-sediments from Buenos Aires province, Argentina. Stud Geophys Geod 47(1):121–145

    Article  Google Scholar 

  • Chaparro MAE, Bidegain JC, Sinito AM, Jurado S, Gogorza CS (2004) Relevant magnetic parameters and heavy metals from relatively polluted stream sediments—vertical and longitudinal distribution along a cross-city stream in Buenos Aires Province, Argentina. Stud Geophys Geod 48(3):613–634

    Article  Google Scholar 

  • Chaparro MAE, Lirio JM, Nunez H, Gogorza CSG, Sinito AM (2005) Preliminary magnetic studies of lagoon and stream sediments from Chascom´us area (Argentina)—magnetic parameters as pollution indicators and some results of using an experimental method to separate magnetic phases. Environ Geol 49(1):30–43

    Article  Google Scholar 

  • Chaparro MAE, Gogorza CSG, Chaparro MAE, Irurzun MA, Sinito AM (2006) Review of magnetism and pollution studies of various environments in Argentina. Earth Planets Space 58(10):1411–1422

    Google Scholar 

  • Chaparro MAE, Nuñez H, Lirio JM, Gogorza CSG, Sinito AM (2007a) Magnetic screening and heavy metal pollution studies in soils from Marambio Station, Antarctica. Antarct Sci 19(3):379–393

    Article  Google Scholar 

  • Chaparro MAE, Chaparro MAE, Marinelli C, Sinito AM (2007b) Multivariate techniques as alternative statistical tools applied to magnetic proxies for pollution: cases of study from Argentina and Antarctica. Environ Geol. doi:10.1007/s00254-007-0823-6 (Online First™)

  • Cuadras CM (1981) Métodos de analisis multivariante. Eunibar, Barcelona

    Google Scholar 

  • Dearing J, Dann R, Hay K, Lees J, Loveland P, Maher B, O’Grady K (1996) Frequency-dependent susceptibility measurements of environmental materials. Geophys J Int 124:228–240

    Article  Google Scholar 

  • Desenfant F, Petrovský E, Rochette P (2004) Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from South France. Water Air Soil Pollut 152:297–312

    Article  Google Scholar 

  • Dunlop J, Özdemir Ö (1997) Rock magnetism. Fundamentals and frontiers. Cambridge University Press, Cambridge, 573 pp

  • Durza O (1999) Heavy contamination and magnetic susceptibility in soils around metallurgical plant. Phys Chem Earth A 24(6):541–543

    Article  Google Scholar 

  • Environmental Protection Agency, EPA SW-846 (1986) Method 3050 Acid digestion of sediments, sludges and soils. Chapter 3: metallic analysis, volume one, section A, part 1 of test methods for evaluating solid waste, Washington DC

  • Georgeaud VM, Rochette P, Ambrosi JP, Vandamme D, Williamson D (1997) Relationship between heavy metals and magnetic properties in a large polluted catchment: The Etang de Berre (South of France). Phys Chem Earth A 22(1–2):211–214

    Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Google Scholar 

  • Gower JC (1987) Introduction to ordination techniques. In: Legendre P, Legendre L (eds) Development in numerical ecology. Springer, Berlin, pp 3–64

    Google Scholar 

  • Gower JC, Krzanowski WJ (1999) Analysis of distance for structured multivariate data and extensions to multivariate analysis of variance. Appl Stat 48(4):505–519

    Google Scholar 

  • Hanesch M, Scholger R (2002) Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ Geol 42:857–870

    Article  Google Scholar 

  • Heller F, Strzyszcz Z, Magiera T (1998) Magnetic record of industrial pollution in soils of Upper Silesia, Poland. J Geophys Res 103(B8):17767–17774

    Article  Google Scholar 

  • Hoffmann V, Knab M, Appel E (1999) Magnetic susceptibility mapping of roadside pollution. J Geochem Int 66(1–2):313–326

    Article  Google Scholar 

  • Hu S, Wang Y, Appel E, Zhu Y, Hoffmann V, Shi C, Yu Y (2003). Magnetic responses to acidification in Lake Yangzonghai, SW China. Phys Chem Earth 28:711–717

    Google Scholar 

  • Hunt A, Jones J, Oldfield F (1984) Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin. Sci Total Environ 33:129–139

    Article  Google Scholar 

  • Johnson RA, Wichern DW (1992) Applied multivariate statistical analysis, 3rd edn. Prentice-Hall, New Jersey, 642 pp

  • Jongman RHG, Ter Braak CJF, Van Tongeren OFR (1987) Data analysis in community and landscape ecology. Pudoc. Wageningen. 299 pp

  • Jordanova D, Veneva L, Hoffmann V (2003) Magnetic susceptibility screening of anthropogenic impact on the Danube River sediments in Northwestern Bulgaria—preliminary results. Stud Geophys Geod 47:403–418

    Article  Google Scholar 

  • Jordanova DV, Hoffmann V, Thomas Fehr K (2004) Mineral magnetic characterization of anthropogenic magnetic phases in the Danube river sediments (Bulgarian part). Earth Planet Sci Lett 221:71–89

    Article  Google Scholar 

  • Kapicka A, Petrovský E, Ustjak S, Machácková K (1999) Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in Czech Republic. J Geochem Explor 66:291–297

    Article  Google Scholar 

  • King J, Banerjee SK, Marvin J, Özdemir Ö (1982) A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth Planet Sci Lett 59:404–419

    Article  Google Scholar 

  • Knab M, Appel E, Hoffmann V (2001) Separation of the anthropogenic portion of heavy metal contents along a highway by means of magnetic susceptibility and fuzzy c-means cluster analysis. Eur J Environ Eng Geophys 6:125–140

    Google Scholar 

  • Knab M, Hoffmann V, Petrovský E, Kapicka A, Jordanova N, Appel E (2006) Surveying the anthropogenic impact of the Moldau river sediments and nearby soils using magnetic susceptibility. Environ Geol 49:527–535

    Article  Google Scholar 

  • Kruiver PP, Passier HF (2001) Coercivity analysis of magnetic phases in sapropel S1 related to variations in redox conditions, including an investigation of the S ratio. Geochem Geophys Geosyst Paper number 2001GC000181

  • Kruiver PP, Dekkers MJ, Heslop D (2001) Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet Sci Lett 189:269–276

    Article  Google Scholar 

  • Kukier U, Fauziah Ishak C, Summer ME, Miller WP (2003) Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environ Pollut 123:255–266

    Article  Google Scholar 

  • Lecoanet H, Leveque F, Ambrosi J-P (2003) Combination of magnetic parameters: an efficient way to discriminate soil-contamination sources (south France). Environ Pollut 122:229–234

    Article  Google Scholar 

  • Magiera T, Strzyszcz Z (1999) Ferrimagnetic minerals of anthropogenic origin in soils of some Polish national parks. Water Air Soil Pollut 124:37–48

    Article  Google Scholar 

  • Magiera T, Strzyszcz Z, Kapicka A, Petrovsky E, MAGPROX TEAM (2006) Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma 130:299–311

    Article  Google Scholar 

  • Maher BA (1986) Characterisation of soils by mineral magnetic measurements. Phys Earth Planet Int 42:76–92

    Article  Google Scholar 

  • Maher BA, Thompson R, Hounslow MW (1999) Introduction. In: Maher BA, Thompson R (eds) Quaternary climates, environments and magnetism. Cambridge University Press, Cambridge, pp 1–48

    Google Scholar 

  • Manly BFJ (1997) Randomization, bootstrap and Monte Carlo methods in biology. 2da. edición. Chapman & Hall, London

    Google Scholar 

  • Mardia K (1980) Multivariate analysis. Academic, New York

    Google Scholar 

  • Matzka J, Maher BA (1999) Magnetic biomonitoring of roadside tree leaves: identification of spatial and temporal variations in vehicle derived particulates. Atmos Environ 33:4565–4569

    Article  Google Scholar 

  • Mullins CE (1977) Magnetic susceptibility of the soil and its significance in soil science: a review. J Soil Sci 28:223–246

    Article  Google Scholar 

  • Peters C, Dekkers MJ (2003) Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys Chem Earth 28:659–667

    Google Scholar 

  • Petrovský E, Elwood B (1999) Magnetic monitoring of air, land and water pollution. In: Maher BA, Thompson R (Eds) Quaternary climates, environment and magnetism, Cambridge University Press, Cambridge, pp 279–322

    Google Scholar 

  • Petrovský E, Kapicka A, Zapletal K, Sebestová E, Spanilá T, Dekkers MJ, Rochette P (1998) Correlation between magnetic properties and chemical composition of lake sediments from northern Bohemia. Preliminary study. Phys Chem Earth A 23(9–10):1123–1126

    Google Scholar 

  • Petrovský E, Kapicka A, Jordanova N, Knab M, Hoffmann V (2000) Low field susceptibility: a proxy method of estimating increased pollution of different environmental systems. Environ Geol 39(3–4):312–318

    Article  Google Scholar 

  • Ramasamy V, Murugesan S, Mullainathan S, Chaparro MAE (2006) Magnetic characterization of recently excavated sediments of Cauvery river, Tamilnadu, India. Pollut Res 25(2):357–362

    Google Scholar 

  • Schibler L, Boyko T, Ferdyn M, Gajda M, Höll S, Jordanova N, Rösler N The Magprox team (2002) Topsoil magnetic susceptibility mapping: data reproducibility and compatibility, measurement strategy. Stud Geophys Geod 46:43–57

    Article  Google Scholar 

  • Scholger R (1998) Heavy metal pollution monitoring by magnetic susceptibility measurements applied to sediments of the river Mur (Styria, Austria). Eur J Environ Eng Geophys 3:25–37

    Google Scholar 

  • Spiteri C, Kalinski V, Rösler W, Hoffmann V, Appel E, MAGPROX team (2005) Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils. Environ Geol 49:1–9

    Article  Google Scholar 

  • Strzyszcz Z (1993) Magnetic susceptibility of soils in the areas influenced by industrial emission, in soil monitoring. Birkhauser Verlag, Basel, Monte Verita, pp 255–269

    Google Scholar 

  • Strzyszcz Z, Magiera T, Heller F (1996) The influence of industrial emissions on the magnetic susceptibility of soils in Upper Silesia. Stud Geophys Geod 40:276–286

    Article  Google Scholar 

  • Tauxe L (1993) Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Rev Geophys 31(3):319–354

    Article  Google Scholar 

  • Thompson R, Oldfield F (1986) Environmental magnetism. Allen & Unwin, London, 225 pp

    Google Scholar 

  • Thompson R, Bloemendal J, Dearing J, Oldfield F, Rummery J, Stober J, Turner G (1980) Environmental applications of magnetic measurements. Science 4430(207):481–486

    Article  Google Scholar 

  • Tite M, Linington R (1975) Effect of climate on the magnetic susceptibility of soils. Nature 256:565–566

    Article  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgol Meeresunters 33:566–575

    Article  Google Scholar 

  • Wang X-S, Qin Y (2005) Correlation between magnetic susceptibility and heavy metals in urban topsoil: a case study from the city of Xuzhou, China. Environ Geol 49(1):10–18

    Article  Google Scholar 

  • Wang X-S, Qin Y (2006) Magnetic properties of urban topsoils and correlation with heavy metals: a case study from the city of Xuzhou, China. Environ Geol 49:897–904

    Article  Google Scholar 

  • Yang T, Liu Q, Chan L, Liu Z (2007) Magnetic signature of heavy metal pollution of sediments: case study from the East Lake in Wuhan, China. Environ Geol 52:1639–1650

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Annamalai University, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Universidad Nacional Autónoma de México (UNAM), LEMIT, CICPBA and CONICET for their financial support. We also would like to express our thanks to Dr. Sandra Jurado and Raúl Pérez for their support in chemical determinations. The authors thank the anonymous reviewers for their useful suggestions as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos A. E. Chaparro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaparro, M.A.E., Sinito, A.M., Ramasamy, V. et al. Magnetic measurements and pollutants of sediments from Cauvery and Palaru River, India. Environ Geol 56, 425–437 (2008). https://doi.org/10.1007/s00254-007-1180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-007-1180-1

Keywords

Navigation