Skip to main content
Log in

Neural network prediction of nitrate in groundwater of Harran Plain, Turkey

  • Original Article
  • Published:
Environmental Geology

Abstract

Monitoring groundwater quality by cost-effective techniques is important as the aquifers are vulnerable to contamination from the uncontrolled discharge of sewage, agricultural and industrial activities. Faulty planning and mismanagement of irrigation schemes are the principle reasons of groundwater quality deterioration. This study presents an artificial neural network (ANN) model predicting concentration of nitrate, the most common pollutant in shallow aquifers, in groundwater of Harran Plain. The samples from 24 observation wells were monthly analysed for 1 year. Nitrate was found in almost all groundwater samples to be significantly above the maximum allowable concentration of 50 mg/L, probably due to the excessive use of artificial fertilizers in intensive agricultural activities. Easily measurable parameters such as temperature, electrical conductivity, groundwater level and pH were used as input parameters in the ANN-based nitrate prediction. The best back-propagation (BP) algorithm and neuron numbers were determined for optimization of the model architecture. The Levenberg–Marquardt algorithm was selected as the best of 12 BP algorithms and optimal neuron number was determined as 25. The model tracked the experimental data very closely (R = 0.93). Hence, it is possible to manage groundwater resources in a more cost-effective and easier way with the proposed model application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdi H, Valentin D, Edelman B, O’Toole AJ (1996) A Widrow-Hoff learning rule for a generalization of the linear auto-associator. J Math Psychol 40(2):175–182

    Article  Google Scholar 

  • Almasri MN, Kaluarachchi JJ (2005) Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environ Model Softw 20(7):851–871

    Article  Google Scholar 

  • Clair TA, Ehrman JM (1996) Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: a neural network approach. Limnol Oceanogr 41(5):921–927

    Article  Google Scholar 

  • El-Din AG, Smith DW (2002) A neural network model to predict the wastewater inflow incorporating rainfall events. Water Res 36(5):1115–1126

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Inc., New Jersey, 604pp

  • Gontarski CA, Rodrigues PR, Mori M, Prenem LF (2000) Simulation of an industrial wastewater treatment plant using artificial neural networks. Comput Chem Eng 24(2–7):1719–1723

    Article  Google Scholar 

  • Hagan MT, Demuth HB, Beale MH (1996) Neural network design. PWS Publishing, Boston

    Google Scholar 

  • Hamed MM, Khalafallah MG, Hassanien EA (2004) Prediction of wastewater treatment plant performance using artificial neural networks. Environ Model Softw 19(10):919–928

    Article  Google Scholar 

  • Karaca F, Özkaya B (2006) NN-LEAP: a neural network-based model for controlling leachate flow-rate in a municipal solid waste landfill site. Environ Model Softw 21(8):1190–1197

    Article  Google Scholar 

  • Kendirli B, Cakmak B, Ucar Y (2005) Salinity in the Southeastern Anatolia Project (GAP), Turkey: issues and options. Irrig Drain 54(1):115–122

    Article  Google Scholar 

  • Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32(4):1013–1022

    Article  Google Scholar 

  • Maier HR, Dandy GC (1998) Understanding the behaviour and optimizing the performance of back-propagation neural networks: an empirical study. Environ Model Softw 13(2):179–191

    Article  Google Scholar 

  • Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: Proceedings of the international joint conference on neural networks, vol 3. IEEE, San Diego, pp. 21–26

  • Onkal-Engin G, Demir I, Engin SN (2005) Determination of the relationship between sewage odour and BOD by neural networks. Environ Model Softw 20(7):843–850

    Article  Google Scholar 

  • Ozdogan M, Woodcock CE, Salvucci GD, Demir H (2006) Changes in summer irrigated crop area and water use in southeastern Turkey from 1993 to 2002: implications for current and future water resources. Water Resour Manage 20(3):467–488

    Article  Google Scholar 

  • Rodriguez MJ, Sérodes JB (1998) Assessing empirical linear and non-linear modelling of residual chlorine in urban drinking water systems. Environ Model Softw 14(1):93–102

    Article  Google Scholar 

  • Şahinci A (1991) Geochemistry of natural waters. Reform printing office, Izmir, 548pp (in Turkish)

  • Sahinkaya E, Özkaya B, Kaksonen AH, Puhakka JA (2007) Neural network prediction of thermophilic (65°C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater. Biotechnol Bioeng 97(4):780–787

    Article  Google Scholar 

  • Strik DPBTB, Domnanovich AM, Zani L, Braun R, Holubar P (2005) Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB neural network toolbox. Environ Model Softw 20(6):803–810

    Article  Google Scholar 

  • Subramani T, Elango L, Damodarasamy SR (2005) Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environ Geol 47(8):1099–1110

    Article  Google Scholar 

  • Toth E, Brath A, Montanari A (2000) Comparison of short-term rainfall prediction models for real-time flood forecasting. J Hydrol 239(1–4):132–147

    Article  Google Scholar 

  • Yesilnacar MI, Gulluoglu MS (2007) Hydrochemical characteristics and the effects of irrigation on groundwater quality in Harran Plain, GAP Project, Turkey. Environ Geol. doi:10.1007/s00254-007-0804-9

Download references

Acknowledgments

This study was funded by the Scientific and Technological Research Council of Turkey (TÜBİTAK project no: 104Y188) and the Scientific Research Projects Committee of Harran University (HÜBAK project no: 603). The authors would like to thank Yasemin Bayindir, Ozlem Demir, Atiye Atguden and Nuray Gok for their continuous help in the field and laboratory studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Irfan Yesilnacar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yesilnacar, M.I., Sahinkaya, E., Naz, M. et al. Neural network prediction of nitrate in groundwater of Harran Plain, Turkey. Environ Geol 56, 19–25 (2008). https://doi.org/10.1007/s00254-007-1136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-007-1136-5

Keywords

Navigation