Skip to main content
Log in

Biogeochemical behavior of Ampelozizyphus amazonicus Ducke in the Pitinga mining district, Amazon, Brazil

  • Original Article
  • Published:
Environmental Geology

Abstract

The vegetal species Ampelozizyphus amazonicus Ducke (Rhamnaceae Family) was chosen as a sampling medium for the lateritic surfaces of the Pitinga Mine in the Amazon region, in order to study the biogeochemical behavior of this species and compare it with the chemical composition of a reference plant. The Pitinga mining district is one of the largest producers of tin in the world. This district contains unique deposits of cryolite and rare metals such as Zr, Nb, Ta, Y and REEs related to granitic bodies that intrude into the volcanic and acid pyroclastic rocks. The results showed that the species A. amazonicus predominantly concentrates significant levels of Zr, Nb, Ta, Th, Be, Sc over U, Hf, Ga and In. These elements are characteristic of the mineral paragenesis for the region, suggesting that this plant can provide a representative sampling medium future geochemical exploration programs in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beus AA (1966) Geochemistry of beryllium. Geochemistry 5:511–531

    Google Scholar 

  • Borges RMK, Dall’agnol R, Costi HT (2003) Geologia, Petrografia e Química Mineral das Micas dos Greisens Estaníferos Associados ao Pluton Água Boa. Pitinga (Am) Rev Bras Geoc 33(1):51–62

    Google Scholar 

  • Brooks RR (1983) Biological methods of prospecting for minerals. Wiley, New York, p 322

    Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. Their role in phytoremediation, microbiology, archaelogy, mineral exploration and phytomining. CAB International, Washington, DC, p 350

  • Dall’agnol R, Bettencourt JS, Botelho NF, Klein EL (2000) Tin, gold and granitoids in Brazil. In: Bhattacharya P, Welch AH (eds) 31st Int Geol Congr, 3–5 Aug 2000, Rio de Janeiro, RJ, Brazil

  • Daoud WK (1988) Granitos estaníferos de Pitinga, Amazonas: contexto geológico e depósitos minerais associados. Dissertação de Mestrado, University of Brasília, DF, Brazil, p 194

  • Ding S, Liang T, Yan J, Zhang Z, Huang Z, Xie Y (2007) Fractionations of rare earth elements in plants and their conceptive model. Sci China C Life Sci 50(1):47–55

    Article  Google Scholar 

  • Greger M (2004) Uptake of nuclides by plants. Department of Botany, Stockholm University, Sweden, p 70

  • Horovitz CT, Schock HH, Horovitz-Kisimova LA (1974) The content of scandium, thorium, silver, and other trace elements in different plant species. Plant Soil 40:397–403

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC, Boca Raton, FL, p 315

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. 3rd edn. CRC, Boca Raton, FL, p 395

  • Kovalevskii AL (1984) Biogeochemical prospecting for ore deposits in the USSR. J Geochem Explor 21:63–72

    Google Scholar 

  • Lenharo SLR, Pollard PJ, Born H (2000) Matrix rock texture in the Pitinga Topaz Granite, Amazonas, Brazil. Rev Brasil Geocien 30(2):238–241

    Google Scholar 

  • Markert B (1995) Instrumental multielement analysis in plant materials––a modern method in environmental chemistry and tropical systems research. CETEM Tecnol Amb 8:32

  • Mathieu D, Bernat M, Nahon D (1995) Short lived U and Th isotope distribution in a tropical laterite derived from granite (Pitinga river basin, Amazonia, Brazil): application to assessment of weathering rate. Earth Planet Sci Lett 136:703–714

    Article  Google Scholar 

  • Miekeley N, Casartelli EA, Do’ito RM (1994) Concentration levels of rare-earth elements and thorium in plants from the Morro do Ferro Environmentas an indicator for the biological availability of transuranium elements. J Radioanal Nucl Chem 182(1):75–89

    Google Scholar 

  • Mortvedt JJ (1994) Plant and soil relationships of uranium and thorium decay series radionuclides––a review. J Environ Qual 23(4):643–650

    Article  Google Scholar 

  • Pliler R, Adams JAS (1962) The distribution of thorium and uranium in Pennsylvanian weathering profile. Geochim Cosmochim Acta 26:1137

    Google Scholar 

  • Tarvainen T, Reeder S, Albanese S (2005) Database management and map production. In: Salminen R et al. (eds) Geochemical atlas of Europe: part 1—background information, methodology and maps (a contribution to IUGS/IAGC global geochemical baselines). Espoo, Geological Survey of Finland

  • Shtangeeva I, Ayrault S (2004) Phytoextraction of thorium from soil and water media water. Air Soil Pollut 154:19–35

    Article  Google Scholar 

  • Wittmann A, Linn TA Jr, Wakita M, Schitt RA (1978) Indium. In: Wedepohl KH (Ed) Handbook of geochemistry, vol II/4. Springer, Berlin

  • Wood SA, Samson IM (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev 28:57–102

    Article  Google Scholar 

  • Wyttenbach A, Furrer V, Schleppi P et al. (1998) Rare earth elements in soil and in soil-grown plants. Plant Soil 199:267–273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Lima e Cunha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima e Cunha, M.C., Pereira, V.P., Menegotto, E. et al. Biogeochemical behavior of Ampelozizyphus amazonicus Ducke in the Pitinga mining district, Amazon, Brazil. Environ Geol 55, 1355–1362 (2008). https://doi.org/10.1007/s00254-007-1086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-007-1086-y

Keywords

Navigation