Advertisement

Environmental Geology

, Volume 55, Issue 3, pp 517–537 | Cite as

Anthropogenic influence on trace element geochemistry of healing mud (peloid) from Makirina Cove (Croatia)

  • S. Miko
  • G. Koch
  • S. Mesić
  • M. Šparica-Miko
  • M. Šparica
  • R. Čepelak
  • A. Bačani
  • P. Vreča
  • T. Dolenec
  • S. Bergant
Original Article

Abstract

Due to their balneotherapeutic features, the organic-rich sediments in Makirina Cove are an important source of healing mud. An environmental geochemistry approach using normalization techniques was applied to evaluate the anthropogenic contribution of trace metals to sediments used as healing mud. Sediment geochemistry was found to be associated with land-use change and storm events, as well as with proximity of a road with heavy traffic in the summer months. Local valley topography preferentially channels lithogenic and pollutant transport to the cove. Concentrations and distribution of trace metals indicate lithogenic (Ni, Cr, Co) and anthropogenic (Pb, Cu, Zn and Se) contributions to the sediments. The calculation of enrichment factors indicates a moderate (EFs between 2–3.5) input of anthropogenic Cu and Pb in surficial sediments to a depth of 10 cm. Patients using the Makirina Cove sediments as healing mud could be to some extent exposed to enhanced uptake of metals from anthropogenic sources via dermal contact.

Keywords

Healing mud Balneotherapy Geochemistry Trace metals Normalization Enrichment factors Pollution 

References

  1. Aloupi M, Angelidis MO (2001) Geochemistry of natural and anthropogenic metals in the coastal sediments of the island of Lesvos, Aegean Sea. Environ Pollut 113(2):211–219CrossRefGoogle Scholar
  2. Appelo CAJ, Postma D (1994) Geochemistry, groundwater and pollution. A.A. Balkema, Rotterdam, The Netherlands, p 536 Google Scholar
  3. ASTM (1982) Standard test methods for plastic limit and plasticity index of soils (D424–459). Annual book of ASTM standards 19:123–126Google Scholar
  4. Baudouin C, Charveron M, Tarroux R, Gall Y (2002) Environmental contaminants and skin cancer. Cell Biol Toxicol 18:41–48CrossRefGoogle Scholar
  5. Beer AM, Fey S, Walch S, Luthgens K, Ostermann T, Lukanov J (2001) The effect of peat components on endocrine and immunological parameters and on trace elements: results of two pilot studies. Clin Lab 47(3–4):161–167Google Scholar
  6. Beer AM, Junginger HE, Lukanov J, Sagorchev P (2003) Evaluation of the permeation of peat substances through human skin in vitro. Int J Pharm 253(1–2):169–175CrossRefGoogle Scholar
  7. Belzile N, Chen Y-W, Xu R (2000) Early diagenetic behaviour of selenium in lake sediments. Appl Geochem 15:1439–1454CrossRefGoogle Scholar
  8. Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC (1998) Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Pollut 102:151–161CrossRefGoogle Scholar
  9. Carra S, Carcangiu G, Padalino G, Palomba M, Tamanini M (2000) The bentonites in pelotherapy: chemical, mineralogical and technological properties of materials from Sardinia deposits (Italy). Appl Clay Sci 16(1–2):117–124CrossRefGoogle Scholar
  10. Carretero I.M (2002) Clay minerals and their beneficial effects upon human health. Appl Clay Sci 21(3–4):155–163CrossRefGoogle Scholar
  11. Cattaneo A, Correggiari A, Langone L, Trincardi F (2003) The late-Holocene Gargano subaqueous delta, Adriatic shelf: sediment pathways and supply fluctuations. Mar Geol 193:61–91CrossRefGoogle Scholar
  12. Combs GF, Gray WP (1998) Chemopreventive agents: selenium. Pharmacol ther 79:179–192CrossRefGoogle Scholar
  13. Constant F, Guillemin F, Collin JF, Boulange M (1998) Use of spa therapy to improve the quality of life clearance low back pain patients. Med Care 36:1309–1314CrossRefGoogle Scholar
  14. Cremaschi M (1990) Stratigraphy and paleoenvironmental significance of the loess deposits on Susak Island (Dalmatian Archipelago). Quat Int 5:97–106CrossRefGoogle Scholar
  15. Crusius J, Thomson J (2003) Mobility of authigenic rhenium, silver and selenium during post-depositional oxidation in marine sediments. Geochimica et Cosmochimica Acta 67:265–273CrossRefGoogle Scholar
  16. Cutter GA, Bruland KW, (1984) The marine biogeochemistry of selenium: a re-evaluation. Limnol Oceanogr 29:1179–92CrossRefGoogle Scholar
  17. da Conceição Freitas M, Andrade C, Rocha F, (2003) Lateglacial and Holocene environmental changes in Portuguese coastal lagoons. 1: The sedimentological and geochemical records of the Santo André coastal area. The Holocene 13(3):433–446CrossRefGoogle Scholar
  18. Davies CJ, Long M, Donald M, Ashbolt N, (1995) Survival of fecal microorganisms in marine and freshwater sediments. Appl Environ Microbiol 61:1888–1896Google Scholar
  19. De Lazzari A, Rampazzo G, Pavoni B, (2004) Geochemistry of sediments in the northern and central Adiatic Sea. Estuar Coast Shelf Sci 59(3):429–440CrossRefGoogle Scholar
  20. Desmarais TR, Solo-Gabriele HM, Palmer CJ (2002) Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl Environ Microbiol 68:1165–1172CrossRefGoogle Scholar
  21. Dolenec T, Faganeli J, Pirc S (1998) Major, minor and trace elements in surficial sediments from the open Adriatic Sea: a regional geochemical study. Geologia Croatica 51(1):59–73Google Scholar
  22. Dolenec M, Lojen S, Ogrinc N, Lambaša Ž (2002) Environmentally controlled variations of δ18O and δ13C in mollusc shells from Makirina Bay, the Murter Sea and Pirovac Bay (Central Adriatic)”. RMZ-Mater Geoenviron 49(1):85–99Google Scholar
  23. Dumestre A, Sauve S, McBride M, Baveye P, Berthelin J (1999) Copper speciation and microbial activity in long-term contaminated soils. Arch Environ Contam Toxicol 36:124–131CrossRefGoogle Scholar
  24. Durn G, Ottner F, Slovenec D (1999) Mineralogical and geochemical indicators of the polygenetic nature of terra rossa in Istria, Croatia. Geoderma 91:125–150CrossRefGoogle Scholar
  25. Elkayam O, Ophir J, Brener S, Paran D, Wigler I (2000) Immediate and delayed effects of treatment at the Dead Sea in patients with psoriatic arthritis. Rheumatol Int 19:77–82CrossRefGoogle Scholar
  26. Ferguson JE (1990) The heavy metals: chemistry, environmental impact and health effects. Pergamon, New York, p 412 Google Scholar
  27. Förstner U, Wittmann GTW (1981) Metal pollution in the aquatic environment. Springer, Heidelberg, p 486 Google Scholar
  28. Frankenberger WT, Enberg RA (1998) Environmental chemistry of selenium. Marcel Dekker, New York, p 713Google Scholar
  29. Fritz F (1978) Hydrogeology of Ravni Kotari and Bukovica, Croatia. Carsus Iugoslaviae 10(1):1–43Google Scholar
  30. Gallagher DL, Johnston KM, Dietrich AM (2001) Fate and transport of copper-based crop protectants in plasticulture runoff and the impact of sedimentation as a best management practice. Water Res 35:2984–2994CrossRefGoogle Scholar
  31. Gladney ES, Burns CE (1984) Compilation of elemental concentration data for the USGS geochemical exploration reference samples GSR-1 to GSR-6. Geostand Newsl 8(2):119–154CrossRefGoogle Scholar
  32. Golchert B, Landsberger S, Hopke PK (1991) Determination of heavy metals in the Rock River (Illinois) through the analysis of sediments. J Radioanal Nucl Chem Artic 148(2):319–337CrossRefGoogle Scholar
  33. Halevy S, Giryes H, Friger M, Grossman N, Karpas Z, Sarov B (2001) The role of trace elements in psoriatic patients undergoing balneotherapy with Dead Sea bath salt. Isr Med Assoc J 11:828–832Google Scholar
  34. Jonathan MP, Ram-Mohan V, Srinivasalu S (2004) Geochemical variations of major and trace elements in recent sediments, off the Gulf of Mannar, the southeast coast of India. Environ Geol 45(4):466–480CrossRefGoogle Scholar
  35. Klenner MF, Weber G (1981) Hygienic problems at the winning of peloids (peats and sludges of lakes) for balneological therapy. Zentralblatt fur Bakteriologie Mikrobiologie und Hygiene [B] 173(5):327–337Google Scholar
  36. Kneckt P (2000) Serum selenium, serum alpha-tocopherol, and the risk of rheumatoid arthritis. Epidemiology 11(4):402–405CrossRefGoogle Scholar
  37. Konrad K, Tatrai T, Hunka A, Vereckei E, Korondi I (1992) Controlled trial of balneotherapy in treatment of low back pain. Ann Rheum Dis 51(6):820–822Google Scholar
  38. Kuldvere A (1989) Extraction of geological material with mineral acids for the determination of arsenic, antimony, bismuth, and selenium by hydride generation atomic absorption spectrometry. Analyst 114(2):125–131CrossRefGoogle Scholar
  39. Lewan MD (1986) Stable carbon isotopes of amorphous kerogens from Phanerozoic sedimentary rocks. Geochimica et Cosmochimica Acta 50:1583–1591CrossRefGoogle Scholar
  40. Li YH (1981) Geochemical cycles of elements and human perturbation, Geochimica et Cosmochimica Acta 45:2073–2084CrossRefGoogle Scholar
  41. Lojen S, Ogrinc N, Vreča P, Samarđija Z, Dolenec T, Mišić, M. (1997) Remineralization of sedimentary organic matter and fluxes of dissolved nutrients in Makirina bay (Croatia). Technical report, University of Ljubljana , Slovenia—«Rudjer Bošković Institute, Center of Marine Research, Zagreb, Croatia, p 24Google Scholar
  42. Mandić V, Novak R, Dürigl T, Čepelak R, (1969) Peloid sites in the Nin Lagoon: results of exploration and medical significance. JAZU, Radovi Instituta u Zadru 16–17:753–786 (in Croatian)Google Scholar
  43. Mandić V and Čepelak R(1989) Balneological expertise of peloids from Pirovac. Technical report, Department of Physical Medical Rehabilitation, Medical Faculty, University of Zagreb, p 22 (in Croatian)Google Scholar
  44. Matthai C, Birch GF, Bickford GP (2002) Anthropogenic trace metals in sediment and settling particulate matter on a high-energy continental shelf (Sydney, Australia). Mar Environ Res 54(2):99–127CrossRefGoogle Scholar
  45. Matz H, Orion E, Wolf R (2003) Balneotherapy in dermatology. Dermatol Ther 16(2):132–140CrossRefGoogle Scholar
  46. Mercone D, Thomson J, Croudace IW, Troelstra SR (1999) A coupled natural immobilisation mechanism for mercury and selenium in deep-sea sediments. Geochimica et Cosmochimica Acta (63):1481–1488Google Scholar
  47. Mihelčić G, Lojen S, Dolenec T, Kniewald G (2006) Trace metals conservation in Morinje Bay sediment: historical record of anthropogenic imissions into a shallow Adriatic bay. Croatica Chemica Acta 79(1):161–167Google Scholar
  48. Miko S, Halamić J, Peh Z, Galović L (2001) Geochemical baseline mapping of soils developed on diverse bedrock from two regions in Croatia. Geol Croatica 54(1):53–118Google Scholar
  49. Morgenstern H, Machtey I (1983) Serum zinc and copper levels in rheumatoid arthritis. Arthritis Rheum 26:933–934CrossRefGoogle Scholar
  50. Nguyen M, Revel M, Dougados M (1997) Prolonged effects of 3-week therapy in a spa resort on lumbar spine, knee and hip osteoarthritis: follow-up after 6 months. A randomized controlled trial. Br J Rheumatol 36:77–81CrossRefGoogle Scholar
  51. Nissenbaum A, Rullkötter J, Yechieli Y (2002) Are the curative properties of “Black mud” from the Dead sea due to the presence of bitumen (asphalt) or other types of organic matter? Environ Geochem Health 24:327–335CrossRefGoogle Scholar
  52. Novak R (1981) Physical characteristics of peloids with special retrospection on mud of Adriatic shore and islands. Zdravstvo 11(2):66–74 (in Croatian)Google Scholar
  53. Oldfield F, Asioli A, Accorsi CA, Mercuri AM, Juggins S, Langone L (2003) A high resolution late-Holocene palaeo environmental record from the central Adriatic Sea. Quater Sci Rev 22:319–342CrossRefGoogle Scholar
  54. Oluić M, Bodrožić D, Mandić V, Novak R, Čepelak R (1984) Peloids of the Karin sea and its application in health protection. Pomorski zbornik 22:437–465 (in Croatian)Google Scholar
  55. Poensin D, Carpentier PH, Fechoz C, Gasparini S, (2003) Effects of mud pack treatment on skin microcirculation. Joint Bone Spine 70:367–370CrossRefGoogle Scholar
  56. Ridgway J, Shimmeild G (2002) Estuaries as repositories of historical contamination and their impact on shelf seas. Estuar Coast Shelf Sci 55:903–928CrossRefGoogle Scholar
  57. Rowell DL (1995) Soil science: methods and applications. Longman Scientific and Technical, Singapore, p 350Google Scholar
  58. Shani J, Barak S, Levi D, Ram M, Schachner ER, Schlesinger T, (1985) Skin penetration of minerals in psoriatics and guinea pigs bathing in hypertonic salt solutions. Pharmacol Res Commun 17:501–512CrossRefGoogle Scholar
  59. Shotyk W, Weiss D, Kramers JD (2001) Geochemistry of the peat bog at Etang de la Gruère, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace elements (Sc, Ti, Y, Zr, Hf and REE) since 12,370 14C yr BP. Geochimica et Cosmochimica Acta 65(14):2337–2360CrossRefGoogle Scholar
  60. Shultz LG (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. US Geological Survey, professional papers, 391-C, p 31Google Scholar
  61. Sukenik S, Buskila D, Neumann L, Kleiner-Baumgarten A, (1992) Mud pack therapy in rheumatoid arthritis. Clin Rheumatol 11:243–247CrossRefGoogle Scholar
  62. Sukenik S, Giryes H, Halevy S, Neumann L, Flusser D, Buskila D (1994) Treatment of psoriatic arthritis at the Dead Sea. J Rheumatol 21:1305–1309Google Scholar
  63. Sukenik S (1996) Balneotherapy for rheumatic diseases at the Dead Sea area. Isr J Med Sci 32:16–19Google Scholar
  64. Sukenik S, Baradin R, Codish S, Neumann L, Flusser D, Abu-Shakra D (2001) Balneotherapy at the Dead Sea area for patients with psoriatic arthritis and concomitant fibromyalgia. Isr Med Assoc J 3:147–150Google Scholar
  65. Summa V, Tateo F (1999) Geochemistry of two peats suitable for medical uses and their behaviour during leaching. Appl Clay Sci 15:477–489CrossRefGoogle Scholar
  66. Šparica M, Koch G, Belak M, Miko S, Šparica Miko M, Viličić D, Dolenec T, Bergant S, Lojen S, Vreča P, Dolenec M, Ogrinc N, Ibrahimpašić H (2005) Recent sediments of Makirina Bay (northern Dalmatia, Croatia): their origin viewed through a multidisciplinary approach. Geologia Croatica 58(1):21–71Google Scholar
  67. Surić M, Juračić M, Horvatinčić H, Krajcar Bronić I (2005) Late Pleistocene–Holocene sea-level rise and the pattern of coastal karst inundation: records from submerged speleothems along the Eastern Adriatic Coast (Croatia). Mar Geol 214(1–3):163–175Google Scholar
  68. Tarp U, Stengaard-Pedersen K, Hansen JC, Thorling EB (1992) Glutathione redox cycle enzymes and selenium in severe rheumatoid arthritis: lack of antioxidative response to selenium supplementation in polymorphonuclear leucocytes. Ann Rheum Dis 51:1044–1049CrossRefGoogle Scholar
  69. Tishler M, Brotovski Y, Yaron M (1995) Effect of spa therapy in Tiberias on patients with ankylosing spondylitis. Clin Rheumatol 14:21–25CrossRefGoogle Scholar
  70. Tyson RV (1995) Sedimentary organic matter. Organic facies and palynofacies. Chapman and Hall, p 615 Google Scholar
  71. Van der Weijden CH (2002) Pitfalls of normalization of marine geochemical data using a common divisor. Mar Geol 184(3–4):167–187CrossRefGoogle Scholar
  72. Vreča P, Dolenec T (2005) Geochemical estimation of copper contamination in the healing mud from Makirina Bay, central Adriatic. Environ Int 31(1):53–61CrossRefGoogle Scholar
  73. Wang W, Fisher NS, Luoma SN (1996) Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Mar Ecol Prog Ser 140:91–113CrossRefGoogle Scholar
  74. Wigler I, Elkayam O, Paran D, Yaron M (1995) Spa therapy for gonarthrosis: a prospective study. Rheumatol Int 15:65–68CrossRefGoogle Scholar
  75. Zehr JP, Oremland RS (1987) Reduction of selenate to selenide by sulphate-respiring bacteria: Experiments with cell suspensions and estuarine sediments. Appl Environ Microbiol 53:1365–1369Google Scholar
  76. Zhang Y, Zahir ZA, Frankenberger WT Jr (2004) Fate of colloidal-particulate elemental selenium in aquatic systems. J Environ Qual 33(2):559–564CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S. Miko
    • 1
  • G. Koch
    • 1
  • S. Mesić
    • 1
  • M. Šparica-Miko
    • 1
  • M. Šparica
    • 1
  • R. Čepelak
    • 3
  • A. Bačani
    • 2
  • P. Vreča
    • 4
  • T. Dolenec
    • 5
  • S. Bergant
    • 1
  1. 1.Croatian Geological SurveyZagrebCroatia
  2. 2.Faculty of Mining, Geology and Petroleum EngineeringUniversity of ZagrebZagrebCroatia
  3. 3.Department of Rheumatology and RehabilitationUniversity of Zagreb Medical SchoolZagrebCroatia
  4. 4.Department of Environmental SciencesJožef Štefan InstituteLjubljanaSlovenia
  5. 5.Department of GeologyFaculty of Natural Sciences and TechnologyLjubljanaSlovenia

Personalised recommendations