Skip to main content
Log in

A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain

  • Original Article
  • Published:
Environmental Geology

Abstract

This contribution analyses the processes involved in the generation of sinkholes from the study of paleokarst features exposed in four Spanish Tertiary basins. Bedrock strata are subhorizontal evaporites, and in three of the basins they include halite and glauberite in the subsurface. Our studies suggest that formation of dolines in these areas results from a wider range of subsidence processes than those included in the most recently published sinkhole classifications; a new genetic classification of sinkholes applicable to both carbonate and evaporite karst areas is thus proposed. With the exception of solution dolines, it defines the main sinkhole types by use of two terms that refer to the material affected by downward gravitational movements (cover, bedrock or caprock) and the main type of process involved (collapse, suffosion or sagging). Sinkholes that result from the combination of several subsidence processes and affect more than one type of material are described by combinations of the different terms with the dominant material or process followed by the secondary one (e.g. bedrock sagging and collapse sinkhole). The mechanism of collapse includes any brittle gravitational deformation of cover and bedrock material, such as upward stoping of cavities by roof failure, development of well-defined failure planes and rock brecciation. Suffosion is the downward migration of cover deposits through dissolutional conduits accompanied with ductile settling. Sagging is the ductile flexure of sediments caused by differential corrosional lowering of the rockhead or interstratal karstification of the soluble bedrock. The paleokarsts we analysed suggest that the sagging mechanism (not included in previous genetic classifications) plays an important role in the generation of sinkholes in evaporites. Moreover, collapse processes are more significant in extent and rate in areas underlain by evaporites than in carbonate karst, primarily due to the greater solubility of the evaporites and the lower mechanical strength and ductile rheology of gypsum and salt rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackermann RV, Schlische RW, Olsen PE (1995) Synsedimentary collapse of portions of the lower Blomidon formation (Late Triassic), Fundy rift basin, Nova Scotia. Can J Earth Sci 32:1965–1976

    Google Scholar 

  • Andrejchuk V, Klimchouk A (2002) Mechanisms of karst breakdown formation in the gypsum karst of the fore-ural region, Russia (from observations in the Kungurskaja Cave). Implication of speleological studies for karst subsidence hazard assessment. Int J Speleol Theme Issue N31(1–4):89–114

    Google Scholar 

  • Beck BF (1988) Environmental and engineering effects of sinkholes. The processes behind the problems. Environ Geol Water Sci 12:71–78

    Article  Google Scholar 

  • Beck BF (2004) Soil piping and sinkhole failures. In: White WB (eds) Encyclopedia of caves. Elsevier, Nueva York, pp 523–528

    Google Scholar 

  • Bell FG (1994) A survey of the engineering properties of some anhydrite and gypsum from the north and midlands of England. Eng Geol 38:1–23

    Article  Google Scholar 

  • Benito G, Pérez del Campo P, Gutiérrez M, Sancho C (1995) Natural and human-induced sinkholes in gypsum terrain and associated environmental problems in NE Spain. Environ Geol 25:156–164

    Article  Google Scholar 

  • Benito G, Gutiérrez F, Pérez-González A, Machado MJ (2000) Geomorphological and sedimentological features in quaternary fluvial systems affected by solution-induced subsidence (Ebro Basin, Spain). Geomorphology 33:209–224

    Article  Google Scholar 

  • Birk S, Liedl R, Sauter M, Teutsch G (2003) Hydraulic boundary conditions as a controlling factor in karst genesis: a numerical modeling study on artesian conduit development in gypsum. Water Resour Res 39(1):SBH 2/1–SBH 2/13

    Google Scholar 

  • Bögli A (1980) Karst hydrology and physical speleology. Springer, Berlin, p 284

    Google Scholar 

  • Christiansen EA (1971) Geology of the Crater lake collapse structure in southeastern Saskatchewan. Can J Earth Sci 8:1505–1513

    Google Scholar 

  • Christiansen EA, Sauer EK (2001) Stratigraphy and structure of a late Wisconsin salt collapse in the Saskatoon low south of Saskatoon, Saskatchewan, Canada: an update. Can J Earth Sci 38:1601–1613

    Article  Google Scholar 

  • Cooper AH (1986) Subsidence and foundering of strata caused by the dissolution of Permian gypsum in the Ripon and Bedale areas, North Yorkshire. In: Harwood GM, Smith DB (eds) The English Zechstein and related topics, vol 2. Geological Society Special Publication, Bath, pp 127–139

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation. National Academy, Washington, DC, pp 36–75

    Google Scholar 

  • Dashnor H, Homand F, Auvray C (2006) Deformation of natural gypsum rock: mechanisms and questions. Eng Geol 86:1–17

    Article  Google Scholar 

  • Dias RP, Cabral J (2002) Interpretation of recent structures in an area of cryptokarst evolution-neotectonics versus subsidence genesis. Geodinámica Acta 15:233–248

    Article  Google Scholar 

  • Dikau R, Brunsden D, Schrott L, Ibsen ML (1996) Landslide recognition. Identification, movement and causes. Wiley, Chichester, pp 122–136

    Google Scholar 

  • Ege JR (1984) Mechanisms of surface subsidence resulting from solution extraction of salt. Rev Eng Geol 6:203–221

    Google Scholar 

  • Forbes J, Nance R (1997) Stratigraphy, sedimentology, and structural geology of gypsum caves in east central New Mexico. Carbonates Evaporites 12(1):64–72

    Google Scholar 

  • Ford DC (1997) Principal features of evaporite karst in Canada. Carbonates Evaporites 12:15–23

    Google Scholar 

  • Ford D (2000) Speleogenesis under uncofined settings. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis evolution of karst aquifers. National Speleological Society, Huntsville, AL, US, pp 319–324

    Google Scholar 

  • Ford DC, Williams P (1989) Karst geomorphology and hydrology. Unwin Hyman, Winchester, MA, p 320

    Google Scholar 

  • García-Castellanos D, Vergés J, Gaspar-Escribano J, Cloetingh S (2003) Interplay between tectonics, climate and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). J Geophys Res 108:B7 2347 ETG 8-1/8-18

  • García del Cura MA, Dabrio CJ, Ordóñez S (1996) Mineral resources of the tertiary deposits of Spain. In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain, the stratigraphical record of crustal kinematics. Cambridge University Press, Cambridge, pp 26–40

    Google Scholar 

  • Ge H, Jackson MPA (1998) Physical modeling of structures formed by salt withdrawal. Implications for deformation caused by salt dissolution. AAPG Bull 82:228–250

    Google Scholar 

  • Guerrero J, Gutiérrez F, Lucha P (2004) Paleosubsidence and active subsidence due to evaporite dissolution in Zaragoza city area (Huerva River valley, NE Spain). Processes, spatial distribution and protection measures for linear infrastructures. Eng Geol 72:309–329

    Article  Google Scholar 

  • Guerrero J, Gutiérrez F, Lucha P (2007) The impact of halite dissolution subsidence on fluvial terrace development. The case study of the Huerva River in the Ebro Basin (NE Spain). Geomorphology (in press)

  • Gutiérrez F (1996) Gypsum karstification induced subsidence: effects on alluvial systems and derived geohazards (Calatayud Graben, Iberian Range, Spain). Geomorphology 16:277–293

    Article  Google Scholar 

  • Gutiérrez F (1998) Fenómenos de subsidencia por disolución de formaciones evaporíticas en las fosas neógenas de Teruel y Calatayud (Cordillera Ibérica). Ph.D. Thesis, University of Zaragoza, p 569

  • Gutiérrez F, Cooper A (2002) Evaporite dissolution subsidence in the historical city of Calatayud, Spain; damage appraisal and prevention. Nat Hazards 25:259–288

    Article  Google Scholar 

  • Gutiérrez F, Ortí F, Gutiérrez M, Pérez-González A, Benito G, Grácia J, Durán Valsero JJ (2001) The stratigraphical record and activity of evaporite dissolution subsidence in Spain. Carbonates Evaporites 16:46–70

    Article  Google Scholar 

  • Gutiérrez F, Calaforra JM, Cardona F, Ortí F, Durán JJ, Garay P (2004) El karst en las formaciones evaporíticas españolas. In: Andreo B, Durán JJ (eds) Investigaciones en sistemas kársticos españoles. IGME, Madrid, pp 49–87

    Google Scholar 

  • Gutiérrez F, Gutiérrez M, Marín C, Desir G, Maldonado C (2005) Spatial distribution, morphometry and activity of La Puebla de Alfindén sinkhole field in the Ebro River valley (NE Spain): applied aspect for hazard zonation. Environ Geol 48:370–383

    Article  Google Scholar 

  • Gutiérrez F, Galve JP, Guerrero J, Lucha P, Cendrero A, Remondo J, Bonachea J, Gutiérrez M, Sánchez JA (2007a) Typology, spatial distribution and detrimental effects of the sinkholes developed in the alluvial evaporite karst of the Ebro River valley downstream Zaragoza city. Earth Surface Processes and Landforms (in press)

  • Gutiérrez F, Gutiérrez M, Gracia FJ, McCalpin JP, Lucha P, Guerrero J (2007b) Plio-Quaternary extensional seismotectonics and drainage network development in the central sector of the Iberian Range (NE Spain). Geomorphology (in press)

  • Gutiérrez M, Gutiérrez F (1998) Geomorphology of the tertiary gypsum formations in the Ebro depression (Spain). Geoderma 87:1–29

    Article  Google Scholar 

  • Hernández A, Anadón P (1985) Teruel. Mapa geologico de Espana. Escala 1:200 000, vol 47. Instituto Geologico y Minero de Espana, Madrid, p 192

  • Jackson JA (1997) Glossary of geology, 4th edn. American Geological Institute, VA, US, p 779

    Google Scholar 

  • Jancin M, Clark DD (1993) Subsidence-sinkhole development in light of mud infiltrate structures within interstratal karst of the coastal plain, Southeast United States. Environ Geol 22:330–336

    Article  Google Scholar 

  • Jassim SZ, Jibril AS, Numan NMS (1997) Gypsum karstification in the Middle miocene Fatha Formation, Mosul area, northern Iraq. Geomorphology 18:137–149

    Article  Google Scholar 

  • Johnson KS (1989) Salt dissolution, interstratal karst, and ground subsidence in the northern part of the Texas panhandle. In: Beck BF (ed) Engineering and environmental impacts of sinkholes and karst, proceedings of the third multidisciplinary conference on sinkholes and the engineering and the environmental impacts of karst, St. Petersburg Beach, Florida, pp 115–121

  • Karacan E, Yilmaz I (2000) Geotechnical evaluation of Miocene gypsum from Sivas (Turkey). Geotech Geol Eng 18:79–90

    Article  Google Scholar 

  • Kerans Ch (1988) Karst-controlled reservoir heterogeneity in Ellenburger group carbonates of west Texas. AAPG Bull 72:1160–1183

    Article  Google Scholar 

  • Kirkham RM, Streufert RK, Kunk MJ, Budhan JR, Hudson MR, Perry WJ (2002) Evaporite tectonism in the lower roaring fork river valley, west-central Colorado. In: Kirkham RM, Scott RB, Judkins TW (eds) Late cenozoic evaporite tectonism and volcanism in west-central Colorado, vol 366. Geological Society of America special paper, pp 73–99

  • Klimchouk A (2000) The formation of epikarst and its role in vadose speleogenesis. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis evolution of karst aquifers. National Speleological Society, Huntsville, AL, US, pp 91–99

    Google Scholar 

  • Klimchouk A, Andrejchuk V (1996) Breakdown development in cover beds and landscape features induced by intrastratal gypsum karst. Int J Speleol 25(3–4):127–144

    Google Scholar 

  • Klimchouk A, Aksem SD (2005) Hydrochemistry and solution rates in gypsum karst: case study from the Western Ukraine. Environ Geol 48:307–319

    Article  Google Scholar 

  • Klimchouk A, Andrejchuk V (2005) Karst breakdown mechanisms from observations in the gypsum caves of the western Ukraine: implications for subsidence hazard assessment. Environ Geol 48:336–359

    Article  Google Scholar 

  • Klimchouk A, Cucchi F, Calaforra JM, Aksem SD, Finocchiaro F, Forti P (1996) Dissolution of gypsum from field observations. Int J Speleol (Italian Edition) 25:37–48

    Google Scholar 

  • Lauritzen SE, Lundberg J (2000) Solutional and erosional morphology. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis evolution of karst aquifers. National Speleological Society, Huntsville, AL, US, pp 408–426

    Google Scholar 

  • Loucks RG (1999) Paleocave carbonate reservoirs: origins, burial-depth modifications, spatial complexity and reservoir implications. AAPG Bull 83(11):1795–1834

    Google Scholar 

  • Lu Y, Cooper AH (1997) Gypsum karst geohazards in China. In: Beck BF, Stephenson JB (eds) The engineering geology and hydrogeology of karst terranes. AA Balkema, Rotterdam, pp 117–125

    Google Scholar 

  • Ortí F (1988) Sedimentación evaporítica continental durante el terciario de la Península Ibérica: aspectos generales. II Congreso Geológico de España, Simposios, Granada, pp 509–518

  • Ortí F (2000) Unidades glauberíticas del terciario ibérico: nuevas aportaciones. Rev Soc Geológica de España 13(2):65–87

    Google Scholar 

  • Ortí F, Salvany JM (1997) Continental evaporitic sedimentation in the Ebro basin during the Miocene. In: Busson G, Schreiber BCh (eds) Sedimentary deposition in rift and foreland basins in France and Spain. Columbia University Press, NY, US, pp 420–439

    Google Scholar 

  • Ortí F, Rosell L (2000) Evaporites systems and diagenetic patterns in the Calatayud Basin (Miocene, central Spain). Sedimentology 47:317–324

    Article  Google Scholar 

  • Osborne RAL (2000) Paleokarst and its significance for speleogenesis. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis evolution of karst aquifers. National Speleological Society, Huntsville, AL, US, pp 133–123

    Google Scholar 

  • Osborne RAL (2002) Cave breakdown by vadose weathering. Int J Speleol 31:37–53

    Google Scholar 

  • Palmer AN (2000) Hydrogeologic control of cave patterns. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis evolution of karst aquifers. National Speleological Society, Huntsville, AL, US, pp 77–90

    Google Scholar 

  • Salinas JL (2004) Diccionario guía de reconocimientos geológicos para ingeniería civil. Ministerio de Fomento, Cedes, Madrid, p 208

    Google Scholar 

  • Selby MJ (1993) Hillslope materials and processes, 2nd edn. Oxford Universty Press, Oxford, England, p 451

    Google Scholar 

  • Sowers GF (1996) Building on sinkholes. ASCE, New York, p 202

    Google Scholar 

  • Tharp TM (1995) Mechanics of upward propagation of cover-collapse sinkholes. Eng Geol 52:23–33

    Article  Google Scholar 

  • Torrescusa S, Klimowitz J (1990) Contribución al conocimiento de las evaporitas Miocenas (Fm. Zaragoza) de la Cuenca del Ebro. In: Ortí F, Salvany JM (eds) Formaciones evaporíticas de la Cuenca del Ebro y cadenas periféricas y de la zona de Levante. ENRESA-GPPG, Barcelona, Spain, pp 120–123

  • Waltham T (1989) Ground subsidence. Chapman and Hall, NY, US, p 188

    Google Scholar 

  • Waltham T, Bell F, Culshaw M (2005) Sinkholes and subsidence. Karst and cavernous rocks in engineering and construction. Springer, Chichester, p 382

    Google Scholar 

  • Warren J (1999) Evaporites. Blackwell Science, Oxford, UK, p 438

    Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, Oxford, UK, p 464

    Google Scholar 

  • White EL, White WB (1969) Processes of cavern breakdown. Natl Speleological Soc Bull 31:83–96

    Google Scholar 

  • White EL, White WB (2000) Breakdown morphology. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis evolution of karst aquifers. National Speleological Society, Huntsville, AL, US, pp 427–429

    Google Scholar 

  • Williams PW (1983) The role of the subcutaneous zone in karst hydrology. J Hydrol 61:45–67

    Article  Google Scholar 

  • Williams P (2003) Dolines. In: Gunn J (ed) Encyclopedia of caves and karst science. Taylor and Francis Group, NY, US, pp 304–310

    Google Scholar 

Download references

Acknowledgements

The original manuscript has been substantially improved thanks to the reviews of Prof. Derek Ford, Dr. Barry Beck and Dr. Tony Waltham. This work has been partially co-financed by the Spanish Education and Science Ministry and the FEDER (project CGL2004-02892/BTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Gutiérrez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, F., Guerrero, J. & Lucha, P. A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain. Environ Geol 53, 993–1006 (2008). https://doi.org/10.1007/s00254-007-0727-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-007-0727-5

Keywords

Navigation