Skip to main content
Log in

The hydrogeochemistry of a heavily used aquifer in the Mexican wine-producing Guadalupe Valley, Baja California

  • Original Article
  • Published:
Environmental Geology

Abstract

The Guadalupe Valley aquifer is the only water source for one of the most important wine industries in Mexico, and also the main public water supply for the nearby city of Ensenada. This groundwater is monitored for major ion, N-NO3, P-PO4, Fe, As, Se, Mo, Cd, Cu, Pb, Zn and Sb concentrations, as well as TDS, pH, dissolved oxygen and temperature. High concentrations of N-NO3 (26 mg l−1), Se (70 μg l−1), Mo (18 μg l−1) and Cu (4.3 μg l−1) suggest that groundwater is being polluted by the use of fertilizers only in the western section of the aquifer, known as El Porvenir graben. Unlike the sites located near the main recharge area to the East of the aquifer, the water in El Porvenir graben has low tritium concentrations (<1.9 TU), indicating a pre-modern age, and thus longer water residence time. No significant variations in water quality (generally <10%) were detected throughout 2001–2002 in the aquifer, suggesting that reduced rainfall and recharge during this dry period did not significantly affect water quality. However, the wells nearest to the main recharge area in the Eastern aquifer show a slight but constant increase in TDS with time, probably as a result of the high (∼200 L S−1) uninterrupted extraction of water at this specific recharge site. Relatively high As concentrations for the aquifer (10.5 μg l−1) are only found near the northern limit of the basin associated with a geological fault.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrade-Barbilla M (1997) Actualización geohidrológica del Valle de Guadalupe, Municipio de Ensenada, Baja California. Grupo Agroindustrial del Valle de Guadalupe, Ensenada, Baja California

  • Badán A, Kretzschmar T, Espejel I, Cavazos T, D’Acosta H, Vargas P, Mendoza L, Leyva C, Aramburo G, Daesslé W, Ahumada B (2006) Hacia un plan de manejo del agua en Valle de Guadalupe, Baja California. Submitted to Revista de la Academia Mexicana de Ciencias

  • Carlyle GC, Hill AR (2001) Groundwater phosphate dynamics in a river riparian zone: effects of hydrologic flowpaths, lithology and redox chemistry. J Hydrol 247:151–168

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca Raton

  • Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater, 20th Edn, American Public Health Association, American Water Works Association, Water Environment Federation, Washington

  • CNA (1991) Estudio de actualización piezométrica y geoquímica del Valle de Guadalupe, Municipio de Ensenada, B.C. Comisión Nacional del Agua, Subgerencia Regional Técnica, Mexico

  • CNA (1998) Balance de los recursos hidráulicos subterráneos acuífero BC-07, Guadalupe, Mpo. Ensenada, B.C. Comisión Nacional del Agua, Subgerencia Regional Técnica, Mexico

  • CNA (1999) Estudio técnico justificativo de la zona geohidrológica BC-07 Guadalupe ubicada en el municipio de Ensenada, Estado de Baja California. Comisión Nacional del Agua, Subgerencia Regional Técnica, Mexico

  • Daesslé LW, Camacho VF, Mendoza-Espinosa LG, Carriquiry JD, Macias VA, Castro PG (2005) Geochemical evolution of groundwater in the Maneadero coastal aquifer during a dry year in Baja California, México. Hydrogeology 13:584–595

    Article  Google Scholar 

  • Diario Oficial de la Federación (1999) NOM-127-SSA1-1994 Salud ambiental, agua para uso y consumo humano-Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Mexican Official Newspaper

  • EPA (2003) Environmental Protection Agency Office of water (4606M) EPA 816-F-03-016 http://www.epa.gov/safewater

  • INEGI (1995) Estudio hidrológico del Estado de Baja California. Instituto Nacional de Estadística, Geografía e Informática. Aguascalientes, México

  • Krapac IG, Dey WS, Roy WR, Smyth CA, Storment E, Sargent SL, Steele JD (2002) Impacts of swine manure pits on groundwater quality. Env Pollution 120:475–492

    Article  Google Scholar 

  • LeBlanc DR (1984) Sewage plume in a sand and gravel aquifer. Cape Cod, Massachusetts: US Geological Survey water-supply paper 2218, USA

  • Moore PA Jr, Reddy KR (1994) Role of Eh and pH on phosphorus geochemistry in sediments of Lake Okeechobee, Florida. J Environ Qual. 23:955–964

    Article  Google Scholar 

  • Ponce VM, Pandey RP, Kumar S (1999) Groundwater recharge by channel infiltration in El Barbón Basin, Baja California, Mexico. J Hydrol 214:1–7

    Article  Google Scholar 

  • Reimann C, Caritat P (1998) Chemical elements in the environment. Springer, Berlin Heidelberg New York

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • SRH (1977) Informe final del estudio geohidrológico del Valle de Guadalupe, Estado de Baja California, Secretaría de Agricultura y Recursos Hidráulicos Contrato EIGZA 77-6G, SARH, Mexico

  • Stollenwerk KG, Parkhurst DL (1999) Modeling the evolution and natural remediation of a ground-water sewage plume. In: Morganwalp DW, Buxton HT (eds) U.S. Geological Survey Toxic Substances Hydrology Program, Proceedings of the Technical Meeting, Charleston, South Carolina, March 8–12, 1999, Volume 3 of 3, Subsurface Contamination from Point Sources: U.S. Geol Surv Water-Resources Investigations Report 99-4018C

  • Walsh JN (1997). Inductively coupled plasma-atomic emission spectrometry. Longman, London

    Google Scholar 

  • Walter DA, Rea BA, Stollenwerk KG, Savoie J (1996) Geochemical and hydrologic controls on phosphorus transport in a sewage-contaminated sand and gravel aquifer near Ashumet Pond, Cape Cod, Massachusetts: U.S. Geol Survey Water-Supply Paper 2463

  • Welch AH, Helsel DR, Focazio MJ, Watkins SA (1999) Arsenic in ground water supplies of the United States. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects. Elsevier, New York

  • Zanini L, Robertson WD, Ptacek CJ, Schiff SL, Mayer T (1998) Phosphorous characterization in sediments impacted by septic effluent at four sites in central Canada. J Contam Hydrol 33:405–429

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge CESPE for their logistics support, especially P. Silva and A. Millán, as well as L. Beltrán from CNA. Thanks to the landowners and farmers of Guadalupe for allowing their wells to be studied. Thanks to V.A. Macias, L. González, E. Ortiz, L. Aveytua, A. Siqueiros, P. Castro (UABC) and E. Hernández (UNAM) for their laboratory and/or field assistance. The critical review by Nancy Green and other reviewers helped us to improve the earlier version of the manuscript. Funding by SIMAC 2000–60152 and the University of Baja California (UABC research grants in 2001 and 2004) is gratefully acknowledged. Hoogeschool Zeeland supported W. Rozier and L. van Dorst during their internship at UABC with LWD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. W. Daesslé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daesslé, L.W., Mendoza-Espinosa, L.G., Camacho-Ibar, V.F. et al. The hydrogeochemistry of a heavily used aquifer in the Mexican wine-producing Guadalupe Valley, Baja California. Environ Geol 51, 151–159 (2006). https://doi.org/10.1007/s00254-006-0318-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-006-0318-x

Keywords

Navigation