Skip to main content
Log in

Geochemical assessment of an arsenic mine adjacent to a water reservoir (León, Spain)

  • Original Article
  • Published:
Environmental Geology

Abstract

A water reservoir constructed for production of hydraulic energy and drinking water in the Riaño valley (León, northern Spain) receives leachates from polluted soils and spoil heaps from a site where small-scale As mining and smelting operations have been developed in the first half of the twentieth century. Water of the upper catchments of the Esla, Yuso and Orza Rivers is stored in this reservoir. The location of these abandoned mine works within the reservoir drainage basin suggested that the stored water could contain high As concentrations. In order to evaluate possible environmental risks, a preliminary soil and surface water geochemical survey has been carried out downstream of the Santa Águeda Mine. Total As concentrations in soils reach 23,800 mg kg−1 in soils and increase with depth, at least up to a depth of 80 cm. Total As concentrations in surface waters reach 890 μg l−1. Despite the fact that there is an important As input to the water reservoir, the water flow from the mine catchment is a negligible contribution when compared with the total volume of water inside the dam (0.07%). This fact considerably decreases the environmental risk associated with the presence of untreated spoil heaps containing As-rich minerals at Santa Águeda mine site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharyya SK, Chakraborty P, Lahiri S, Raymahashay BC, Guha S, Bhowmik A (1999) Arsenic poisoning in the Ganges Delta. Nature 401:545

    Article  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Chapman Hall, London

  • Alonso Herrero E (1981) Estudio geológico de la zona de Riaño-Valdeburón (León, Noroeste de España) [Geological study of the Riaño-Valdeburón zone (León, Northwestern Spain)]. Tierras de León, Spain [in Spanish]

  • Astolfi E, Maccagno A, Fernández JCG, Vaccara R, Stimola R (1981) Relation between arsenic in drinking water and skin cancer. Biol Trace Elem Res 3:133–143

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1993) Toxicological profile for arsenic. US Public Health Service, Atlanta

  • Beyer WN, Cromartie EJ (1987) A survey of Pb, Cu, Zn, Cd, Cr, As, and Se in earthworms and soil from diverse sites. Environ Monitor Assess 8(1):27–36

    Article  Google Scholar 

  • BOE (Boletín Oficial del Estado) (1985) Ley de aguas 29/1985 [Water Law 29/1985]. BOE no.189, Madrid [in Spanish]

  • Borgono JM, Greiber R (1971) Epidemiological study of arsenicism in the city of Antofagasta. Trace Subst Environ Health 5:13–24

    Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic, New York

    Google Scholar 

  • Cebrian ME, Albores A, Aguilar M, Blakely E (1983) Chronic arsenic poisoning in the north of Mexico. Hum Toxicol 2:121–133

    PubMed  Google Scholar 

  • Connor JA, Bowers RL, Nevin JP, Fisher RT (1998) Guidance manual for RBCA Tool Kit for Chemical Releases. Groundwater Services Inc

  • Corretgé LG, Cienfuegos I, Cuesta A, Galán G, Montero P, Rodriguez-Pevida LS, Suárez O, Villa L (1985) Granitoides de la Región Palentina (Cordillera Cantábrica, España) [Granitoids of Palentine Region (Cantabrian Range, Spain)]. Paper presented at the IX Reunión de Geología del Oeste Peninsular, Oporto [in Spanish]

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment, Chem Rev 89:713–764

    Article  Google Scholar 

  • Cummings DE, Caccavo F, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the sissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Tech33:723–729

    Article  Google Scholar 

  • Das D, Samanta G, Mandal BK, Chowdhury TR, Chanda CR, Chowdhury PP, Basu GK, Chakraborti D (1996) Arsenic in groundwater in six districts of West Bengal, India. Environ Geochem Health 18:5–15

    Article  Google Scholar 

  • Dove PM, Rimstidt JD (1985) The solubility and stability of scorodite, FeAsO42H2O. Am Mineral 70:838–844

    Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modelling hydrous ferric oxide.Wiley, New York

    Google Scholar 

  • European Soil Bureau (2000) Heavy metal (trace element) and organic matter contents of European soils. European Commission, Joint Research Centre, Ispra, Italy

  • Fendorf SE, Eick MJ, Grossl P, Sparks DL (1997) Arsenate and chromate retention mechanisms on goethite. Environ Sci Tech 31:315–320

    Article  Google Scholar 

  • Fernández, A (2002) Estudio de la mineralización de As en Las Viescas, Riaño (León): Implicaciones medioambientales [Study of the As mineralization in Las Viescas, Riaño (León): Environmental implications]. Proyecto Fin Carrera, Universidad de Oviedo, Spain [in Spanish]

  • Fuller CC, Davis JA (1989) Influence of coupling of sorption and photosynthetic processes on trace element cycles in natural waters. Nature 340:52–54

    Article  Google Scholar 

  • Gieré R, Sidenko NV, Lazareva EV (2003) The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Appl Geochem 18:1347–1359

    Article  Google Scholar 

  • Gómez-Caminero A, Howe P, Hughes M, Kenyon E, Lewis DR, Moore M, Ng J, Aitio A, Beecking G (2001) Arsenic and arsenic compounds. In: World Health Organisation (ed) The Environmental Health Criteria Series 224, 2nd edn, Finland

  • Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon, New York

    Google Scholar 

  • IARC (1987) Arsenic and arsenic compounds. In: IARC monographs on the evaluation of carcinogenic risks of chemicals to humans, Overall evaluations on carcinogenicity updating of IARC monographs, 1–42 Lyon: IARC, (Suppl 7)

  • Julivert M (1971) Decollement tectonics in the hercynian Cordillera of Northwest Spain. Am J Sci 270:1–29

    Article  Google Scholar 

  • Kavanagh PJ, Farago ME, Thornton I, Braman RS (1997) Bioavailability of arsenic in soil and mine wastes of the Tamar valley, SW England. Chem Speciation Bioavailability 9(3):77–81

    Google Scholar 

  • Korte NE, Fernando Q (1991) A review of arsenic (III) in groundwater. Critical Rev Environ Control 21:1–39

    Article  Google Scholar 

  • Krause E, Ettel VA (1989) Solubilities and stabilities of ferric arsenate compounds. Hydrometallurgy 22:311–337

    Article  Google Scholar 

  • Lacasa A (1934) Catalogación de los yacimientos minerales de antimonio (Paredes y Riaño) [Classification of the antimony mineral deposits (Paredes and Riaño)]. Catálogo Descriptivo de Criaderos Minerales, 2:226–233 [in Spanish]

  • Langner HW, Inskeep WP (2000) Microbial reduction of arsenate in the presence of ferrihydrite. Environ Sci Tech 34:3131–3136

    Article  Google Scholar 

  • Lobato L (1977) Geología de los valles altos de los ríos Esla, Yuso, Carrión y Deva [Geology of the top valleys of the Rivers Esla, Yuso, Carrión and Deva] (NE de León, NO de Palencia y SO de Santander). Instituto Fray Bernardino de Sahagún, CSIC, León, Spain [in Spanish]

  • Luque C (1985), Las mineralizaciones de mercurio de la Cordillera Cantábrica [Mercury mineralizations in the Cantabrian Range]. PhD, University of Oviedo, Spain [in Spanish]

  • Martínez-García E, Wagner RH, Lobato L, Fernández L, Alonso JL (1983) El carbonífero de la Región Oriental (Pisuerga-Carrión) [The Carboniferous of the Eastern Region (Pisuerga-Carrión)]. Paper presented at the X Congreso Internacional de Estratigrafía y Geología del Carbonífero, IGME, 166–177, Spain [in Spanish]

  • Matera V, Le Hecho I, Laboudigue A, Thomas P, Tellier S, Astruc M (2003) A methodological approach for the identification of arsenic bearing phases in polluted soils. Environ Pollut126:51–64

    Article  PubMed  Google Scholar 

  • Nickson RT, McArthur J, Burgess W, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338

    Article  PubMed  Google Scholar 

  • Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bungladesh and West Bengal. Appl Geochem 15:403–413

    Article  Google Scholar 

  • Nordstrom DK, Parks GA (1987) The solubility and stability of scorodite, FeAsO42H2O: discussion. Am Mineral 72:849–851

    Google Scholar 

  • Ordóñez A, Loredo J, Fernández A, García Iglesias J (2003) Environmental geochemical exploration downstream an arsenic mine in León (Spain). Paper presented at the IV Iberian Geochemical Meeting, Departamento de Ciencias da Terra, Univ. Coimbra, 247–249

  • Page GW (1981) Comparison of groundwater and surface water for patterns and levels of contamination by toxic substances. Environ Sci Tech15(12):1475–1481

    Article  Google Scholar 

  • Paniagua A, Rodriguez-Pevida L, Gutiérrez-Villarias JL (1988) Mineralizaciones As-Sb-Au asociadas a rocas igneas filonianas del NE de León: Las minas de Burón [As-Sb-Au mineralizations associated to vein igneous rocks in NE León: the Burón mines]. Boletín de la Sociedad Española de Mineralogía 11–1:35–46

  • Pierce ML, Moore CB 1980, Adsorption of arsenite on amorphous iron hydroxide from dilute aqueous solution. Environ Sci Technol 14(2):214–216

    Article  Google Scholar 

  • Pierce ML, Moore CB (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res 16:1247–1253

    Article  Google Scholar 

  • Pongratz R (1998) Arsenic speciation in environmental samples of contaminated soil. Sci Total Environ 224(1–3):133–141

    Article  Google Scholar 

  • Richardson S, Vaugham DJ (1989) Arsenopyrite a spectroscopic investigation of altered surfaces. Mineral Mag 53:213–222

    Article  Google Scholar 

  • Robbins RG (1987) The solubility and stability of scorodite, FeAsO42H2O (Discussion). Am Mineral 72:842–844

    Google Scholar 

  • Robbins CW, Wiegand CL (1990) Field and laboratory measurements. In: Tanji KK (ed) ASCE Manuals and Reports 71, Agricultural salinity, assessment and management. American Society of Civil Engineers, New York, pp 201–219

    Google Scholar 

  • Sadiq M (1997) Arsenic chemistry in soils An overview of thermodynamic predictions and field observation. Water, Air Soil Pollut 95:117–136

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Smith RA, Alexander RB, Wolman MG (1987) Water-quality trends in the Nations rivers. Science 235:1607–1615

    Article  Google Scholar 

  • Soler JM (1883) Reseña geológico-minera de la Provincia de León [Geological-mining review of León Province] Imprenta de la Diputación Provincial, Spain [in Spanish]

  • Stollenwerk KG (2003) Geochemical processes controlling transport of arsenic in groundwater a review of adsorption. In: Welch AH, Stollenwerk KG (eds) Arsenic in Ground Water geochemistry and occurrence. Kluwer , Boston, pp 351–379

    Chapter  Google Scholar 

  • Striegl RG (1987) Suspended sediment and metals removal from urban runoff by a small lake. Water Res Bulletin 23(6):985–996

    Google Scholar 

  • USEPA (1982) An exposure and risk assessment for arsenic. EPA Report 440/4-85-005. US Environmental Protection Agency, Washington

  • USEPA (1997a) Exposure Factors Handbook. EPA Report EPA/600/P-95/002F. US Environmental Protection Agency, Washington

  • USEPA (1997b) IRIS (Integrated Risk Information System) on-line database maintained in Toxicology Data Network (TOXNET) National Library of Medicine, Bethesda

  • US Salinity Laboratory Staff (1954) pH reading of saturated soil paste. In: Richards LA (ed) Diagnosis and improvement of saline and alkali soils. USDA Agricultural Handbook 60. US Government Printing Office, Washington, p 102

  • Waychunas GA, Rea BA, Fuller CC, Davis JA (1993) Surface chemistry of ferryhydrite; Part 1, EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta 57:2251–2269

    Article  Google Scholar 

  • Welch AH, Lico MS, Hughes JL (1988) Arsenic in groundwater of the western United States. Groundwater 26(3):333–347

    Google Scholar 

  • WHO (1999) Fact sheet n° 210, WHO, Geneva, Switzerland

  • Wilber WG, Hunter JV (1979) The impact of urbanization on the distribution of heavy metals in the bottom sediments of the Saddle River. Am Water Res Assn 15(3):790–800

    Article  Google Scholar 

  • Williams M (2001) Arsenic in mine waters an international study. Environ Geol 40(3):267–278

    Article  Google Scholar 

  • Williams TM, Rawlins BG, Smith B, Breward N (1998) In vitro determination of arsenic bioavailability in contaminated soil and mineral beneficiation waste from Ron Phibun, Southern Thailand: a basis for improved risk assessment. Environ Geochem Health 20:169–177

    Article  Google Scholar 

  • Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Tech 34:4747–4753

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ordóñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, R., Ordóñez, A. & Loredo, J. Geochemical assessment of an arsenic mine adjacent to a water reservoir (León, Spain). Environ Geol 50, 873–884 (2006). https://doi.org/10.1007/s00254-006-0259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-006-0259-4

Keywords

Navigation