Skip to main content
Log in

Simulation of the development of gypsum maze caves

  • Original Article
  • Published:
Environmental Geology

Abstract

The development of gypsum maze caves under artesian conditions has been simulated. The numerical model simulations show that the evolution of maze caves in this type of setting requires structural preferences such as laterally extended fissure networks in a horizon of the gypsum layer. Without any structural preferences vertical shafts rather than maze caves are predicted to develop. The most important stage for the development of horizontal caves under artesian conditions is found to be the initial karstification period. During this period the structure of the mature conduit system is established. The solutional enlargement of conduits is spatially extended, total dissolution rates are higher than the later ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

c :

Concentration of dissolved gypsum (mass of gypsum dissolved in a unit volume of water)

c eq :

Equilibrium concentration of gypsum

cin,:

Inflow concentration of dissolved gypsum

cout,:

Outflow concentration of dissolved gypsum

D,:

Joint diffusion coefficient of calcium and sulphate ions

d,:

Pipe diameter

dc,:

Increase in concentration along pipe axis

dz,:

Distance along pipe axis

F,:

Dissolution rate

g,:

Gravitational acceleration

h,:

Mass transfer coefficient

hc,:

Hydraulic head in the conduit system

hf,:

Hydraulic head in the fissured system

L,:

Length of a pipe

l,:

Length of a pipe segment

n,:

Number of pipes connected to a node

P,:

Pipe perimeter

Q,:

Flow rate

R c ,:

Volumetric rate of recharge to the conduit system

r f ,:

Volumetric rate of recharge to the fissured system per unit area

S,:

Storage coefficient of the fissured system

Sh,:

Sherwood number

t,:

Time

T,:

Transmissivity of the fissured system

u,:

Average flow velocity in a pipe

x,:

Space coordinate

y,:

Space coordinate

z,:

Space coordinate along the pipe axis

Δm,:

Mass loss during a time step

Δt,:

Length of a time step

γ,:

Volumetric rate of fluid transfer between fissured system and conduit system per unit area

Γ,:

Volumetric rate of fluid transfer between fissured system and conduit system

λ,:

Friction factor

References

  • Annable WK, Sudicky EA (1998) Simulation of karst genesis: hydrodynamic and geochemical rock-water interactions in partially-filled conduits. Bull d’Hydrogéologie 16:211–222

    Google Scholar 

  • Barenblatt GI, Zheltov IP, Kochina IN (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J Appl Math Mech 24:1286–1303

    Article  Google Scholar 

  • Beek WJ, Muttzall KMK (1975) Transport phenomena. Wiley, London

    Google Scholar 

  • Birk S, Liedl R, Sauter M (2000) Characterization of gypsum aquifers using a coupled continuum-pipe flow model. In: Stauffer F, Kinzelbach W, Kovar K, Hoehn E (eds) Calibration and reliability in groundwater modelling, vol 265. IAHS Publication, Idyllwild, pp 16–21

  • Birk S, Liedl R, Sauter M, Teutsch G (2003) Hydraulic boundary conditions as a controlling factor in karst genesis: a numerical modeling study on artesian conduit development in gypsum. Water Resources Research 39(1):1004. DOI 10.1029/2002WR001308 : SBH 2-1-SBH 2-14

    Google Scholar 

  • Clemens T (1998) Simulation der Entwicklung von Karstaquiferen (Simulation of karst aquifer evolution). PhD Thesis, University of Tübingen

  • Clemens T, Hückinghaus D, Sauter M, Liedl R, Teutsch G (1996) A combined continuum and discrete network reactive transport model for the simulation of karst development. In: Kovar K, van der Heijde P (eds) Calibration and reliability in groundwater modelling, vol 237. IAHS Publication, Idyllwild, pp 309–318

  • Clemens T, Hückinghaus D, Sauter M, Liedl R, Teutsch G (1997) Modelling of the genesis of karst aquifer systems using a coupled reactive transport model. In: Pointed T (ed) Hard rock hydrosystems, vol 241. IAHS Publication, Idyllwild, pp 3–10

  • Clemens T, Hückinghaus D, Sauter M, Liedl R, Teutsch G (1998) Simulation of the evolution of maze caves. Bull d’Hydrogéologie 16:201–210

    Google Scholar 

  • Clemens T, Hückinghaus D, Liedl R, Sauter M (1999) Simulation of the development of karst aquifers: role of the epikarst. Int J Earth Sci 88:157–162

    Article  CAS  Google Scholar 

  • Dreybrodt W (1990) The role of dissolution kinetics in the development of karst aquifers in limestone: a simulation of karst evolution. J Geol 98:639–655

    Google Scholar 

  • Dreybrodt W (1996) Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models. Water Resour Res 32(9):2923–2935

    Article  CAS  Google Scholar 

  • Dreybrodt W, Gabrovšek F (2000) Dynamics of the evolution of single karst conduits. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds), Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville, pp 184–193

    Google Scholar 

  • Dreybrodt W, Romanov D, Gabrovšek F (2002) Karstification below dam sites; a model of inceasing leakage from reservoirs. Environ Geol 42(5):518–524

    Article  Google Scholar 

  • Gabrovšek F, Dreybrodt W (2000) Role of mixing corrosion in calcite-aggressive H2O–CO2–CaCO3 solutions in the early evolution of karst aquifers in limestone. Water Resour Res 36(5):1179–1188

    Article  Google Scholar 

  • Gabrovšek F, Dreybrodt W (2001) A model of the early evolution of karst aquifers in limestone in the dimensions of length and depth. J Hydrol 240:206–224

    Article  Google Scholar 

  • Groves CG, Howard AD (1994) Early development of karst systems: 1. Preferential flow path enlargement under laminar flow. Water Resour Res 30(10):2837–2846

    Article  Google Scholar 

  • Harbaugh AW, McDonald MG (1996) Programmer’s documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model. USGS Open File Report 96-486

  • Horlacher HB, Lüdecke HJ (1992) Strömungsberechnung für Rohrsysteme (Flow calculation for pipe systems). Expert Verlag, Ehningen

    Google Scholar 

  • Howard AD, Groves CG (1995) Early development of karst systems: 2. Turbulent flow. Water Resour Res 31(1):19–26

    Article  Google Scholar 

  • Hückinghaus D (1998) Simulation der Aquifergenese und des Wärmetransports in Karstaquiferen (Simulation of aquifer genesis and heat transport in karst aquifers). Tübinger Geowissenschaftliche Arbeiten C42

  • Huyakorn PS, Lester BH, Faust CR (1983) Finite element techniques for modeling groundwater flow in fractured aquifers. Water Resour Res 19(4):1019–1035

    Google Scholar 

  • Incropera FP, DeWitt DP (1996) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  • James AN, Lupton ARR (1978) Gypsum and anhydrite in foundations of hydraulic structures. Geotechnique 28:249–272

    CAS  Google Scholar 

  • Jeschke AA, Vosbeck K, Dreybrodt W (2001) Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochimica et Cosmochimica Acta 65(1):27–34

    Article  CAS  Google Scholar 

  • Kaufmann G (2002) Karst aquifer evolution in a changing water table environment. Water Resour Res 38(6):1090. DOI 10.1029/2001WR000256: 26–1–26–9

    Google Scholar 

  • Kaufmann G, Braun J (1999) Karst aquifer evolution in fractured rocks. Water Resour Res 35(11):3223–3238

    Article  CAS  Google Scholar 

  • Kaufmann G, Braun J (2000) Karst aquifer evolution in fractured, porous rocks. Water Resour Res 36(6):1381–1393

    Article  CAS  Google Scholar 

  • Klimchouk AB (1992) Large gypsum caves in the Western Ukraine and their genesis. Cave Sci 19(1):3–11

    Google Scholar 

  • Klimchouk AB (1996a) Speleogenesis in gypsum. Int J Speleol 25(3–4):61–82

    Google Scholar 

  • Klimchouk AB (1996b) Gypsum karst in the Western Ukraine. Int J Speleol 25(3–4):263–278

    Google Scholar 

  • Klimchouk AB (2000a) Dissolution and conversions of gypsum and anhydrite. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville, pp 160–168

    Google Scholar 

  • Klimchouk AB (2000b) Speleogenesis under deep-seated and confined settings. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville, pp 244–260

    Google Scholar 

  • Klimchouk AB (2000c) Speleogenesis of the great gypsum mazes in the Western Ukraine. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis: Evolution of karst aquifers. National Speleological Society, Huntsville, pp 261–273

    Google Scholar 

  • Klimchouk AB (2000d) Speleogenesis in gypsum. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds), Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville, pp 431–442

    Google Scholar 

  • Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) (2000) Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville, pp 431–442

    Google Scholar 

  • Lamont-Black J, Younger PL, Forth RA, Jones CJFP, Liedl R, Teutsch G, Sauter M, Birk S, Gutiérrez M, Gutiérrez F, Marin C, Maldonado C, Klimchouk A, Yablokova N, Askem S, Cooper A (2001) Risk of subsidence due to evaporite solution (ROSES)—a European prediction and management scheme: final report. European Commission Framework IV Programme, Contract numbers ENV4-CT97-0603, IC20-CT97-0042

  • Lauritzen SE, Olding N, Pedersen J (1992) Modelling the evolution of channel networks in carbonate rocks. In: Hudson JA (ed) ISRM Symposium, Eurock92, pp 57–62

  • Liedl R, Sauter M (1998) Modelling of aquifer genesis and heat transport in karst systems. Bull d’Hydrogéologie 16:185–200

    Google Scholar 

  • Liedl R, Sauter M, Hückinghaus D, Clemens T, Teutsch G (2003) Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resour Res 39(1):1057. DOI 10.1029/2001WR001206: SBH 6–1-SBH 6–11

    Google Scholar 

  • Liu ST, Nancollas GH (1971) The kinetics of dissolution of calcium sulphate dihydrate. J Inorg Nucl Chem 33:2295–2311

    Article  Google Scholar 

  • Palmer AN (1984) Geomorphic interpretation of karst features. In: LaFleur RG (ed) Groundwater as a geomorphic agent. Allen and Unwin, Boston, pp 173–209

    Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21

    Article  Google Scholar 

  • Palmer AN (1998) Modelling the evolution and morphology of limestone caves. Bull d’Hydrogéologie 16:157–166

    Google Scholar 

  • Romanov D, Gabrovšek F, Dreybrodt W (2003) The impact of hydrochemical boundary conditions on the evolution of limestone karst aquifers. J Hydrol 276(1–4):240–253

    Article  CAS  Google Scholar 

  • Siemers J, Dreybrodt W (1998) Early development of karst aquifers on percolation networks of fractures in limestone. Water Resour Res 34(3):409–419

    Article  Google Scholar 

  • Svensson U, Dreybrodt W (1992) Dissolution kinetics of natural calcite minerals in CO2-water systems approaching calcite equilibrium. Chem Geol 100:129–145

    Article  CAS  Google Scholar 

  • Younger PL, Teutsch G, Custidio E, Elliot T, Sauter M, Manzano M, Liedl R, Clemens T, Hückinghaus D, Tore CS, Lambán J, Cardoso da Silva G (1997) Groundwater resources and climate change effects—GRACE: final Report. EC Framework III Environment and Climate Programme, Project EV5V-CT94-0471

Download references

Acknowledgements

This work is part of the ROSES (Risk of Subsidence due to Evaporite Solution) project funded by the European Commission Framework IV Programme (Contract number ENV4-CT97-0603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Birk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birk, S., Liedl, R., Sauter, M. et al. Simulation of the development of gypsum maze caves. Environ Geol 48, 296–306 (2005). https://doi.org/10.1007/s00254-005-1276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-005-1276-4

Keywords

Navigation