Skip to main content
Log in

Strain investigations on calcite marbles using neutron time-of-flight diffraction

  • Original Article
  • Published:
Environmental Geology

Abstract

In order to describe and explain the effect of bowing of marble facade panels, neutron time-of-flight diffraction was applied to determine residual macro- and microstrain on the calcite mineral phase. The measurements were combined with investigations of the crystallographic preferred orientation (texture) measurements by neutron diffraction, macroscopic measuring of the bowing on marble building stones, as well as microfabric analyses. Three samples were investigated to explain the bowing effect: a fresh broken sample, a good conditioned facade panel and a strongly deformed facade panel. Residual intracrystalline strain was detected in all investigated samples, which differed in the degree of bowing. For the first time, the preferred orientation and the residual strain were found to be related. The results show that different strain magnitudes are reflected by residual strains, which differ significantly in magnitude and direction. Furthermore, different Bragg peak widths have been detected as an indication of microscopic strain. The observed residual strain values in the samples are related with the grain shape and texture properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bortz SA, Erlin B, Monk CB (1988) Some field problems with thin veneer building stones. In: Donaldson B (ed) New stone technology, design and construction for exterior wall systems, ASTM STP 996. American Society for Testing and Materials, Philadelphia, pp 11–31

  • Emery CL (1964) Strain energy in rocks. In: Judd WR (ed) State of stress in the Earth crust. Elsevier, New York, pp 234–279

  • Franzini M (1995) Stones in monuments: natural and anthropogenic deterioration of marble artifacts. Eur J Mineral 7:735–743

    CAS  Google Scholar 

  • Friedman M (1972) Residual elastic strain in rocks. Tectonophysics 15:297–330

    Article  Google Scholar 

  • Frischbutter A, Neov D, Scheffzük C, Vrána M, Walther K (2000) Lattice strain measurements on sandstones under load using neutron diffraction. J Struct Geol 22(11/12):1587–1600

    Google Scholar 

  • Frischbutter A, Walther K, Scheffzük C (2002) Strainmessungen an geologischen Proben mit dem Diffraktometer EPSILON-MDS (Vereinigtes Institut für Kernforschung Dubna, Russische Föderation). PSI-Proceedings: Anwenderworkshop zu Spannungsfeldmessungen mittels Neutronen (Paul-Scherrer-Institut Villigen, CH):75–83

  • Gross KA, Paterson M (1965) Natural X-ray line broadening in limestones and marbles. Am J Sci 263:238–244

    CAS  Google Scholar 

  • Hoskin ER, Russel JE (1981) The origin of the measured residual strains in crystalline rocks. In: Friedman M, Logan J, Stearns DW (eds) Mechanical behaviour of crustal rocks. Am Geophys Union, Washington DC 24:187–198

  • Kessler DW (1919) Physical and chemical tests of the commercial marbles of the United States. Technologic tests of the Bureau of Standards no 123, 54 pp.

  • Kleber W (1990) Einführung in die Kristallographie, Verlag Technik GmbH, Berlin

  • Koch A, Siegesmund S (2002) Bowing of marble panels: on-site damage analysis from the Oeconomicum Building at Göttingen (Germany). In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Spec Publ Geol Soc Lond 205:299–314

    Google Scholar 

  • Koch A, Siegesmund S (2004) The combined effect of moisture and temperature on the anomalous expansion behaviour of marble. Environ Geol (this volume) DOI 10.1007/s00254-004-1037-9

  • Logan JM (2004) Laboratory and case studies of thermal cycling and stored strain on the stability of selected marble. Environ Geol (this volume) DOI 10.1007/s00254-004-1047-7

  • Logan JM, Hadedt M, Lehnert D, Denton M (1993) A case study of the properties of marble as building veneer. Int J Rock Mech Min Sci Geomech Abstr 30(7):1531–1537

    Article  Google Scholar 

  • Mustonen J (1993) Finlandia-Talon julkisivujen korjaus. Rakennusinsinööri-pälvät RIL K160-1993:61–68

  • Nordtest Method NT BUILD 500 (2002) Cladding panels: field method for measurement of bowing. Nordtest Project 1443-99/2

    Google Scholar 

  • Ondrasina J, Kirchner D, Siegesmund S (2002) Freeze–thaw cycles and their influence on marble deterioration: a long-term experiment. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Spec Publ Geol Soc Lond 205:9–18

    Google Scholar 

  • Pintschovius L (1992) Macrostresses, microstresses and stress tensors. In: Hutchings MT, Krawitz AD (eds) Measurement of residual and applied stress using neutron diffraction. Kluwer, NATO ASI Series E, no 216, Dordrecht, pp 115–130

  • Rayleigh Lord (1934) The bending of marble. Proc R Soc A 144:266–279

    Google Scholar 

  • Reik G (1976) Residuelle Spannungen in quarzreichen Gesteinen: Röntgendiffraktometrische Messung und Erklärungsmöglichkeiten ihrer Entstehung. Geol Rundsch 65:66–83

    Google Scholar 

  • Reik G, Vardar M (1974) Bestehen Zusammenhänge zwischen residuellen Spannungen und tektonischer Beanspruchung? Rock Mech 6:101–116

    Google Scholar 

  • Ritter H (1992) Die Marmorplatten sind falsch dimensioniert. Stein 1:18–19

    Google Scholar 

  • Sage JD (1988) Thermal microfracturing of marble. In: Marinos PG, Koukis GC (eds) Engineering geology of ancient works, monuments and historical sites. Balkema, Rotterdam, pp 1013–1018

  • Savage WZ (1978) The development of residual stresses in cooling rock bodies. Geophys Res Lett 5:633–636

    CAS  Google Scholar 

  • Scheffzük Ch, Frischbutter A, Walther K (1998) Intracrystalline strain measurements with neutron diffraction: application to a Cretaceous sandstone from the Elbezone (Germany). Schriftenr Geowiss 6:39–48

    Google Scholar 

  • Scheffzük Ch, Walther K., Frischbutter A (2001) Applied and residual strain/stress measurements on a dolomite rock sample using neutron time-of-flight diffraction. J Neutron Res 9 (2–4):187–192

  • Siegesmund S, Ullemeyer K, Weiss T, Tschegg EK (2000) Physical weathering of marbles caused by anisotropic thermal expansion. Int J Earth Sci 89:170–182

    Article  CAS  Google Scholar 

  • Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

  • Ullemeyer K, Spalthoff P, Heinitz J, Isakov NN, Nikitin AN, Weber K (1998) The SKAT texture diffractometer at the pulsed reactor IBR-2 at Dubna: experimental layout and first measurements. Nuclear Instr Method Phys Res A 412:80–88

    Article  CAS  Google Scholar 

  • Voight B (1966) Restspannungen im Gestein. Proc First Congr Int Soc Rock Mech 2:45–50

    Google Scholar 

  • Vollbrecht A, Rust S, Weber K (1991) Development of microcracks in granites during cooling and uplift: examples from the Variscan basement in NE-Bavaria, Germany. J Struct Geol 7:787–799

    Article  Google Scholar 

  • Walther K, Frischbutter A, Scheffzük Ch (1998) The diffractometer Epsilon for the measurement of strains: an estimation of the full stress tensor. Schriftenr Geowiss 6:19–28

    Google Scholar 

  • Walther K, Scheffzük C, Frischbutter A (2000) Neutron time-of-flight diffractometer Epsilon for strain measurements: layout and first results. Phys B, Condensed Matter 276–278:130–131

    Google Scholar 

  • Walther K, Frischbutter A, Scheffzük Ch, Kenkmann T, Eichhorn F, Daymond MR (2004) Strain scanning across a shock-deformed quartzite/dunite interface. Tectonophysics (in press)

  • Weiss T, Siegesmund S, Fuller ER Jr (2002) Thermal stresses and microcracking in calcite and dolomite marbles via finite element modelling. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Geol Soc Spec Publ Lond 205:89–102

    Google Scholar 

  • Weiss T, Siegesmund S, Fuller ER Jr (2003) Thermal degradation of marble: indications from finite element modelling. Building Environ 38:1251–1260

    Article  Google Scholar 

  • Widhalm C, Tschegg E, Eppensteiner W (1996) Anisotropic thermal expansion causes deterioration of marble cladding. J Perf Construct Facility ASCE 10:5-10

    Article  Google Scholar 

  • Winkler EM (1994) Stone in architecture, 3rd edn. Springer, New York

  • Zeisig A, Siegesmund S, Weiss T (2002) Thermal expansion and its control on the durability of marbles. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Geol Soc Spec Publ Lond 205:65–80

    Google Scholar 

Download references

Acknowledgements

This work was supported through the BMBF grants 03-DUO3X4 and 03-DUO3G1. We thank the University of Göttingen for providing the deformed facade panels, K.J. Stein for the quarry sample of Peccia, and the Frank Laboratory for Neutron Physics in Dubna for providing the neutron beam to carry out the texture and strain measurements. Constructive reviews by G. Braun and K. Ullemeyer are thankfully appreciated by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Scheffzük.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheffzük, C., Siegesmund, S. & Koch, A. Strain investigations on calcite marbles using neutron time-of-flight diffraction. Env Geol 46, 468–476 (2004). https://doi.org/10.1007/s00254-004-1048-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-004-1048-6

Keywords

Navigation