Skip to main content
Log in

Biofilms and extracellular matrices on geomaterials

  • Original Article
  • Published:
Environmental Geology

Abstract

Microbial biofilms are ubiquitous in aquatic and terrestric ecosystems as well as on man-made material. They are initial colonizers on all surfaces and take part in biogenic weathering on natural rocks as well as on building stone. The structure and function of the biofilm matrix, mainly extracellular polysaccharides (EP), is documented for biofilms on stone surfaces: the hydrated gel acts as glue between the organisms and the material surface. Besides EP, living cells, cell debris and mineral particles are embedded in the matrix. These particles appear to be deposited on the surfaces of cell walls and interfaces in the biofilm matrix. As an important function of the matrix, EP stabilizes the biological activity against periodic desiccation. It was demonstrated that in several polymers (alginate, dextran, levan and others) a typical extracellular enzyme, the alpha-amylase, develops enhanced resistance against desiccation stress. Consequences of EP production and biofilm development on surfaces are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4 a

Similar content being viewed by others

References

  • Albeck S, Weiner S, Addadi L (1996) Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro. Chem Eur J 2:278–284

    CAS  Google Scholar 

  • Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z (1997) Interactions between biofilms and the environment. FEMS Microbiol Rev 20:291–303

    CAS  PubMed  Google Scholar 

  • Booth G (1997) Gecko: a continuous 2-D world for ecological modeling. Artificial Life J 3:147–163

    CAS  Google Scholar 

  • Brandes D (1992) Flora und Vegetation von Stadtmauern. Tuexenia 12:315–339

    Google Scholar 

  • Delieu T, Walker DA (1972) Improved cathode for measurement of photosynthetic oxygen evolution by isolated chloroplasts. New Phytol 71:201–225

    CAS  Google Scholar 

  • Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88

    Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Rudolph K (1987) Studies on the extracellular polysaccharides (EPS) produced in vitro by Pseudomonas phaseolicola. 1. Indications for a polysaccharide resembling alginic acid in 7 Pseudomonas syringae pathovars. J Phytopathol 118:276–287

    CAS  Google Scholar 

  • Hoppert M (2003) Microscopic techniques in biotechnology, Wiley-VCH, Weinheim

  • Hoppert M, Holzenburg A (1998) Electron microscopy in microbiology. RMS Handbook Series No. 43, Bios Scientific, Oxford

  • Hoppert M, Berker R, Flies C, Kämper M, Pohl W, Schneider J, Ströbel S (2002) Biofilms and their extracellular environment on geomaterials: methods for investigation down to nanometre scale. Geol Soc of London, Spec Publ 205, pp 207–215

    Google Scholar 

  • Kreft J-U, Booth G, Wimpenny JWT (1998) BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144:3275–3287

    CAS  PubMed  Google Scholar 

  • Kreft J-U, Piciorenau C, Wimpenny JWT, van Losdrecht MCM (2001) Individual-based modelling of biofilms. Microbiology 147:2897–2912

    CAS  PubMed  Google Scholar 

  • Labuza TP (1975) Interpretation of sorption data in relation to the state of constituent water. In: Duckworth R (ed) Water relations of foods. Academic Press, New York, pp 155–172

  • Mansch R, Bock E (1998) Biodeterioration of natural stone with special reference to nitrifying bacteria. Biodegradation 9:47–52

    Article  CAS  PubMed  Google Scholar 

  • Raha M, Kawagishi I, Müller V, Kihara M, Macnab RM (1992) Escherichia coli produces a cytoplasmic alpha-amylase, Amy A. J Bacteriol 174:6644–6652

    CAS  PubMed  Google Scholar 

  • Schulze-Lam S, Fortin, D, Davis BS, Beveridge TJ (1996) Mineralization of bacterial surfaces. Chem Geol 132:171–181

    Article  CAS  Google Scholar 

  • Warscheid T (1996a) Biogene Schäden an Werkstoffen—Erkennung und Analyse im REM und in der Lichtmikroskopie. In: Vetters H. (ed) DVM-Manuskript zur 17. Tagung des Arbeitskreises Rastermikroskopie in der Materialprüfung. Berlin, pp 229–236

  • Warscheid T (1996b) Impacts of microbial biofilms in the deterioration of inorganic building materials and their relevance for conservation practice. Int Zeitschr Bauinstandsetzung 2:493–504

    Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stones—a review. Int Biodeterioration Biodegradation 46:343–368

    Article  CAS  Google Scholar 

  • Wingender J, Strathmann M, Rode A, Leis A, Flemming HC (2001) Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Meth Enzymol 336:302–314

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by grants from the Deutsche Forschungsgemeinschaft (SFB 471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hoppert.

Additional information

Special issue: Stone decay hazards

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemmling, A., Kämper, M., Flies, C. et al. Biofilms and extracellular matrices on geomaterials. Env Geol 46, 429–435 (2004). https://doi.org/10.1007/s00254-004-1044-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-004-1044-x

Keywords

Navigation