Skip to main content
Log in

The combined effect of moisture and temperature on the anomalous expansion behaviour of marble

  • Original Article
  • Published:
Environmental Geology

Abstract

Three calcitic marble types often used as cladding material and different in lattice preferred orientation (texture), grain shape preferred orientation, grain size distribution and grain interlocking are investigated to study the combined effect of thermal cycles (day-night) and moisture on the decay of marble, particularly on the bowing phenomenon. Repetitive heating-cooling under dry conditions leads to considerable inelastic residual strain only in the first thermal cycle. The residual strain continuously increases again if water is present, whereby the moisture content after a thermal cycle has a certain impact on the decay rate. The water-enhanced thermal dilatation strongly correlates with the deterioration rate obtained from the laboratory bow test. All applied approaches reveal that the texture in combination with the grain shape preferred orientation control the intensity and anisotropy of marble deterioration, thus, the cutting direction of facade panels has to be considered in terms of durability. On-site analysis from building facades confirm the laboratory results such as the bowing tendency of different marbles, directional dependence, relevance of moisture content during cyclical heating and the loss of strength due to environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2
Fig. 3
Fig. 4a–c
Fig. 5a–c
Fig. 6a–d
Fig. 7
Fig. 8a–c
Fig. 9a–c
Fig. 10
Fig. 11a–c
Fig. 12
Fig. 13a–c
Fig. 14a,b

Similar content being viewed by others

References

  • Barsotelli M, Fratini F, Giorgetti G, Manganelli Del Fa C, Molli G (1998) Microfabric and alteration in Carrara marble: a preliminary study. Scinece and Technology for Cultural Heritage 7(2): 115–126

    Google Scholar 

  • Battaglia S, Franzini M, Mango F (1993) High sensitivity apparatus for measuring linear thermal expansion: preliminary results on the response of marbles. Il Nuovo Cimento 16:453–461

    Google Scholar 

  • Bortz SA, Erlin B, Monk CB (1988) Some filed problems with thin veneer building stones. In: Donaldson B (ed) New Stone Technology, Design and Construction for Exterior Wall Systems. American Society for Testing and Materials, Philadelphia, pp 11–31

  • Bouineau A, Perrier R (1995) La décohésion granulaire, maladie des revêtements de façades en marbre. Mines et Carrières—Industrie Minérale Août-Septembre 147:32–35

    Google Scholar 

  • Bucher WH (1956) Role of gravity in orogenesis. Bulletin of the Geological Society of America 67:1295–1318

    Google Scholar 

  • Dahms M, Bunge HJ (1989) The iterative series-expansion method for quantitative texture analysis, I. General Outline. Journal of Applied Crystallography 22:439–447

    Article  Google Scholar 

  • EN 13364 (1999) Natural stone test methods—Determination of the breaking load at dowel hole. European Committee for Standardization, Brussels

  • EN 12372 (1999) Natural stone test methods—Determination of flexural strength under concentrated load. Beuth, Berlin

  • Feddema JJ, Meierding TC (1987) Marble weathering and air pollution in Philadelphia. Atmospheric Environment 21:143–157

    Google Scholar 

  • Fei Y (1995) Thermal Expansion. In: Ahrens T J (ed) Mineral Physics and Crystallography. American Geophysical Union, Washington, pp 29–44

  • Grimm WD (1994) “...zum Steinerweichen” - Verformung von Marmorplatten auf alten Friedhoefen. Naturstein 10/94:52–57

  • Grimm WD (1999) Beobachtungen und Ueberlegungen zur Verformung von Marmorobjekten durch Gefuegeauflockerung. Z dt geol Ges 150:195–236

    Google Scholar 

  • Jelinek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:63–67

    Article  Google Scholar 

  • Jornet A, Rück P (2000) Bowing of Carrara marble slabs: A case study. Proceedings of “Quarry—Laboratory—Monument” International Congress Pavia 2000 1:355–360

  • Jornet A, Teruzzi T, Rück P (2002) Bowing of Carrara marble slabs: comparison between natural and artificial weathering. In: Prikryl R, Viles HA (eds) Understanding and managing of stone decay (SWAPNET 2001). Karolinum Press, Prague, pp 161–170

  • Kessler DW (1919) Physical and chemical test of the commercial marbles of the United States. Government Printing Office, Washington DC

  • Kleber W (1990) Einführung in die Kristallographie, VEB Verlag Technik, Berlin

  • Koch A, Siegesmund S (2002) Bowing of marble panels: On-site damage analysis from the Oeconomicum Building at Goettingen (Germany). In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies. Geological Society, London, pp 299–314

  • Leiss B, Ullemeyer K (1999) Texture characterisation of carbonate rocks and some implications for the modeling of physical anisotropies, derived from idealized texture types. Z dt geol Ges 150/2:259–274

    Google Scholar 

  • Leiss B, Weiss T (2000) Fabric anisotropy and its influence on physical weathering of different types of Carrara marbles. Journal of Structural Geology 22:1737–1745

    Article  Google Scholar 

  • Logan JM, Hadedt M, Lehnert D, Denton M (1993) A case study of the properties of marble as building veneer. International Journal of Rock Mechanics, Mining Sciences and Geomechanics 30:1531–1537

    Google Scholar 

  • Nordtest Method NT BUILD 499 (2002a) Cladding Panels: Test for Bowing. Nordtest project 1443–99/1

  • Nordtest Method NT BUILD 500 (2002b) Cladding Panels: Field Method for Measurement of Bowing. Nordtest project 1443–99/2

  • Ondrasina J, Kirchner D, Siegesmund S (2002) Freeze-thaw cycles and their influence on marble deterioration: a long-term experiment. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies. Geological Society, London, pp 9–18

  • Passchier CW, Trouw RAJ (1996) Microtectonics, Springer, Berlin Heidelberg New York

  • Poschlod K (1990) Das Wasser im Porenraum kristalliner Naturwerksteine und sein Einfluss auf die Verwitterung. Münchner geowissenschaftliche Abhandlungen : Reihe B, Allgemeine und angewandte Geologie 7:1-62

  • Ritter H (1992) Die Marmorplatten sind falsch dimensioniert. Stein H.1/1992:18–19

  • Rosenholtz JL, Smith DT (1949) Linear thermal expansion of calcite, var. Iceland spar, and Yule Marble. The American Mineralogist 34:846–854

    Google Scholar 

  • Royer-Carfagni G (1999) On the thermal degradation of marble. International Journal of Rock Mechanics and Mining Sciences 36:119–126

    Article  Google Scholar 

  • Royer-Carfagni G (2000) Some considerations on the warping of marble facades: The example of Alvar Aaltos Finland Hall in Helsinki. Construction and Building Materials 13(18): 449–457

    Article  Google Scholar 

  • Ruedrich J, Weiss T, Siegesmund, S (2002) Thermal behaviour of weathered and consolidated marbles. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies. Geological Society, London, pp 255–271

  • Sage JD (1988) Thermal microfracturing of marble. In: Marinos PG, Koukis GC (eds) Engineering Geology of Ancient Works, Monuments and Historical Sites. Balkema, Rotterdam, pp 1013–1018

  • Schouenborg B, Grelk B, Brundin JA, Alnaes L: Buktningsprovning av marmor för fasadbeklädning. NORDTEST-projekt 1443–99: SP Rapport 2000 28:1-31. http://www.sp.se/building/team/PDF/Rapport%20final.pdf

  • Schouenborg B, Alnaes L, Brundin JA, Grelk B, Blasi P (2001) Testing and Assessment of Marble and Limestone (TEAM). Proceedings of the fourth annual workshop of EUROTHEN 2001

  • Schouenborg B, Grelk B, Alnaes L, Brundin JA, Blasi P, Yates T, Marini P, Tschegg E, Unterweger R, Tokarz B, Koch A, Bengtsson T, Mladenovic A, Goralczyk S (2003) TEAM—Testing and Assessment of Marble and Limestone Cladding. International Symposium on Industrial Minerals and Building Stones 2003, Istanbul

  • Siegesmund S, Ullemeyer K, Weiss T, Tschegg EK (2000) Physical weathering of marbles caused by anisotropic thermal expansion. International Journal of Earth Sciences 89:170–182

    Google Scholar 

  • Strohmeyer D (2004) Naturwerksteine: Gefuege und gesteinstechnische Eigenschaften. Doctoral thesis, University of Goettingen

  • Thomasen SE, Ewart CS (1984) Durability of thin-set marble. Third International Conference on Durability of Building Materials and Components 313–323

  • Trewitt TJ, Tuchmann J (1988) Amoco may replace marble on Chicago headquarters. ENR March: 11–12

    Google Scholar 

  • Tschegg EK, Widhalm C, Eppensteiner W (1999) Ursachen mangelnder Formbeständigkeit von Marmorplatten. Z dt geol Ges 150/2:283–297

    Google Scholar 

  • Weiss T, Siegesmund S, Fuller ER (2002) Thermal stresses and microcracking in calcite and dolomite marbles via finite element modelling. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies. Geological Society, London, pp 65–80

  • Weiss T, Siegesmund S, Fuller ER (2003) Directional dependence of thermal degradation in marble: A finite element approach. Building and Environment 38:1251–1260

    Article  Google Scholar 

  • Widhalm C, Tschegg E, Eppensteiner W (1996) Anisotropic thermal expansion causes deformation of marble cladding. Journal of Performance of Constructed Facilities 10:5-10

    Article  Google Scholar 

  • Winkler EM (1996) Technical note: properties of marble as building veneer. International Journal of Rock Mechanics, Mineral Science and Geomechanics 33(2): 215–218

    Google Scholar 

  • Zeisig A, Siegesmund S, Weiss T (2002) Thermal expansion and its control on the durability of marbles. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies. Geological Society, London, pp 65–80

Download references

Acknowledgements

The authors would like to thank the European Commission for financial support in the frame of the European research project “Testing and Assessment of Marble and Limestone” (Contract no. G5RD-CT-2000–00233). The co-operation with the project partners is gratefully acknowledged. The authors are deeply grateful for the careful and constructive review by J. Logan and A. Jornet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Koch.

Additional information

Special Issue: Stone decay hazards

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, A., Siegesmund, S. The combined effect of moisture and temperature on the anomalous expansion behaviour of marble. Env Geol 46, 350–363 (2004). https://doi.org/10.1007/s00254-004-1037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-004-1037-9

Keywords

Navigation