Skip to main content

Advertisement

Log in

Solar bioreactors used for the industrial production of microalgae

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae are excellent sources of biomass containing several important compounds for human and animal nutrition—proteins, lipids, polysaccharides, pigments and antioxidants as well as bioactive secondary metabolites. In addition, they have a great biotechnological potential for nutraceuticals, and pharmaceuticals as well as for CO2 sequestration, wastewater treatment, and potentially also biofuel and biopolymer production. In this review, the industrial production of the most frequently used microalgae genera—Arthrospira, Chlorella, Dunaliella, Haematococcus, Nannochloropsis, Phaeodactylum, Porphyridium and several other species is discussed as concerns the applicability of the most widely used large-scale systems, solar bioreactors (SBRs)—open ponds, raceways, cascades, sleeves, columns, flat panels, tubular systems and others. Microalgae culturing is a complex process in which bioreactor operating parameters and physiological variables closely interact. The requirements of the biological system—microalgae culture are crucial to select the suitable type of SBR. When designing a cultivation process, the phototrophic production of microalgae biomass, it is necessary to employ SBRs that are adequately designed, built and operated to satisfy the physiological requirements of the selected microalgae species, considering also local climate. Moreover, scaling up microalgae cultures for commercial production requires qualified staff working out a suitable cultivation regime.

Key points

Large-scale solar bioreactors designed for microalgae culturing.

Most frequently used microalgae genera for commercial production.

Scale-up requires suitable cultivation conditions and well-elaborated protocols.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    PubMed  Google Scholar 

  • Acién FG, Gómez-Serrano C, Morales-Amaral MM, Fernández-Sevilla JM, Molina-Grima E (2016) Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Appl Microbiol Biotechnol 100:9013–9022

    PubMed  Google Scholar 

  • Acién FG, Molina E, Reis A, Torzillo G, Zittelli G, Sepúlveda J, Masojídek J (2017) Photobioreactors for the production of microalgae. In: Gonzalez-Fernandez C, Muñoz R (eds) Microalgae-based biofuels and bioproducts. Woodland Publishing, Cambridge, From feedstock cultivation to end-products, pp 1–44

    Google Scholar 

  • Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two- and one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98:300–305

    CAS  PubMed  Google Scholar 

  • Ahmad A, Hassan SW, Banat F (2022) An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy. Bioengineered 13:9521–9547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alcántara C, Posadas E, Guieysse B, Muñoz R (2015) Microalgae-based wastewater treatment. In: Se-Kwon K (ed) Handbook of microalgae: biotechnology advances. Academic Press, Amsterdam, pp 439–455

    Google Scholar 

  • Arad SM, Richmond A (2004) Industrial production of microalgal cell-mass and secondary products - species of high potential: Porphyridium sp. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd., Oxford, UK, pp 289–297

  • Arbib Z, Ruiz J, Álvarez-Díaz P, Garrido-Perez C, Perales JA (2014) Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res 49:465–474

    CAS  PubMed  Google Scholar 

  • Arbib Z, Maín D, Cano R, Saúco C, Fernandez M, Lata E, Rogalla F (2022) Large-scale demonstration of microalgae-based wastewater biorefineries. In: Demirer GN, Uludag-Demirer S (eds) Integrated wastewater management and valorization using algal cultures. Elsevier, Amsterdam, pp 215–234

    Google Scholar 

  • Assunçao J, Malcata FX (2020) Enclosed “non-conventional” photobioreactors for microalga production: a review. Algal Res 52:102107

    Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    CAS  PubMed  Google Scholar 

  • Barkia I, Saari N, Manning SR (2019) Microalgae for high-value products towards human health and nutrition. Mar Drugs 17:304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barros A, Pereira H, Campos J, Marques A, Varela J, Silva J (2019) Heterotrophy as a tool to overcome the long and costly autotrophic scale-up process for large scale production of microalgae. Sci Rep 9:13935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayu A, Noerdjito DR, Rahmwati SI, Putra YM, Karnjanakom S, Widayatno WB (2022) Biological and technical aspects on valorization of red microalgae genera Porphyridium. Biomass Convers Bioref. https://doi.org/10.1007/s13399-021-02167-5

    Article  Google Scholar 

  • Becker EW (2013) Microalgae for human and animal nutrition. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley-Blackwell, Chicester, UK, pp 461–503

  • Belay A (1997) Mass culture of Spirulina outdoors – The Earthrise Farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): Physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 131–158

    Google Scholar 

  • Belay A (2013) Biology and industrial production of Arthrospira (Spirulina). In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley-Blackwell, Chicester, UK, pp 339–358

  • Ben-Amotz A (2004) Industrial production of microalgal cell-mass and secondary products – major industrial species. Dunaliella. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology.  Blackwell Science Ltd., Oxford, UK, pp 273–208

  • Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–126

    CAS  Google Scholar 

  • Benemann JR (1992) Microalgae aquaculture feeds. J Appl Phycol 4:233–245

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotech 70:313–321

    CAS  Google Scholar 

  • Borowitzka MA (2013a) Dunaliella: biology, production and markets. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley-Blackwell, Chicester, UK, pp 359–368

  • Borowitzka MA (2013b) High-value products from microalgae – their development and commercialisation. J Appl Phycol 25:743–756

    CAS  Google Scholar 

  • Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Berlin/Heidelberg, Germany, pp 601–652

    Google Scholar 

  • Borowitzka MA (2018a) Commercial-scale production of microalgae for bioproducts. In: La Barre S, Bates SS (eds) Blue biotechnology: production and use of marine molecules, vol 1. Wiley-VCH, Weinheim, pp 33–65

    Google Scholar 

  • Borowitzka MA (2018b) The ‘stress’ concept in microalgal biology – homeostasis, acclimation and adaptation. J Appl Phycol 30:2815–2825

    Google Scholar 

  • Borowitzka MA, Vonshak A (2017) Scaling up microalgal cultures to commercial scale. Eur J Phycol 52:407–418

    CAS  Google Scholar 

  • Borowitzka MA (2013) Techno-economic modeling for biofuels from microalgae. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy, developments in applied phycology. Springer Science+Business Media, Dordrecht, pp 255–264

    Google Scholar 

  • Boussiba S, Richmond AE (1979) Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Arch Microbiol 120:155–159

  • Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A (1987) Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass 12:37–47

  • Burlew JS (1953) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington, Publ 600, Washington, DC, p 357 p

    Google Scholar 

  • Butler TO, Padmaperuma G, Lizzul AM, McDonald J, Vaidyanathan S (2022) Towards a Phaeodactylum tricornutum biorefinery in an outdoor UK environment. Biores Technol 344:126320

    CAS  Google Scholar 

  • Camacho Rubio F, Acién Fernandez FG, Sanchez Perez JA, Garcia Camacho F, Molina Grima E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62:71–86

    Google Scholar 

  • Carneiro M, Ranglová K, Lakatos GE, Câmara Manoel JA, Grivalský T, Kozhan DM, Toribio A, Moreno J, Otero A, Varela J, Xavier Malcata F, Suárez Estrella F, Acién-Fernándéz FG, Molnár Z, Ördög V, Masojídek J (2021) Growth and bioactivity of two chlorophyte (Scenedesmus and Chlorella) strains co-cultured outdoors in two different thin-layer units using municipal wastewater as a nutrient source. Algal Res 56:102299

    Google Scholar 

  • Celi C, Fino D, Savorani F (2022) Phaeodactylum tricornutum as a source of value-added products: a review on recent developments in cultivation and extraction technologies. Biores Technol Rep 19:101122

    CAS  Google Scholar 

  • Chalermthai B, Charoensuppanimit P, Nootong K, Olsen BD, Assabumrungrat S (2023) Techno-economic assessment of co-production of edible bioplastic and food supplements from Spirulina. Sci Rep 13:10190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudry S (2021) Integrating microalgae cultivation with wastewater treatment: a peak into economics. Appl Microbiol Biotechnol 193:3395–3406

    CAS  Google Scholar 

  • Chaumont D, Thepenier C, Gudin C, Junjas C (1988) Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentum from laboratory to pilot plant. 1981–1987. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal Biotechnology. Elsevier Applied Science, London, pp 199–208

    Google Scholar 

  • Chauton MS, Reitana KI, Norsker NH, Tveterås R, Kleivdal HT (2015) A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture 436(2015):95–103

    CAS  Google Scholar 

  • Chini Zittelli G, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotech 70:299–312

    CAS  Google Scholar 

  • Chini Zittelli G, Pastorelli R, Tredici MR (2000) A modular flat panel photobioreactor (MFPP) for indoor cultivation of Nannochloropsis sp. under artificial illumination. J Appl Phycol 12:521–526

    Google Scholar 

  • Clippinger J, Davis R (2019) Techno-economic analysis for the production of algal biomass via closed photobioreactors: future cost potential evaluated across a range of cultivation system designs. Technical report, national renewable energy laboratory, Golden, USA NREL/TP-5100–72716, 42 

  • Craggs R, Park J, Sutherland D, Heubeck S (2015) Economic construction and operation of hectare-scale wastewater treatment enhanced pond systems. J Appl Phycol 27:1913–1922

    CAS  Google Scholar 

  • Cunha P, Pereira H, Costa M, Pereira J, Silva JT, Fernandes N, Varela J, Silva J, Simões M (2020) Nannochloropsis oceanica cultivation in pilot-scale raceway ponds – from design to cultivation. Appl Sci 10:1725

    CAS  Google Scholar 

  • Cysewski GR, Todd Lorenz R (2004) Industrial production of microalgal cell-mass and secondary products – species of high potential: Haematococcus. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd., Oxford, UK, pp 281–288

  • Dharmaraja J, Shobana S, Huy M, Vatland AK, Ashokkumar V, Kumar G (2023) Design and scale-up of photobioreactors. In: Sirohi R, Pandey A, Sim S, Chang J-S, Lee D-J (eds) Photobioreactors: design and applications. Current developments in biotechnology and bioengineering, Elsevier Inc, Amsterdam, pp 11–32

    Google Scholar 

  • El-Sheekh M, Abomohra A (eds) (2022) Handbook of algal biofuels: aspects of cultivation, conversion and biorefinery. Elsevier, Amsterdam, p 653

    Google Scholar 

  • El-Sheekh MM, Gheda SF, El-Khair A, El-Sayed B, Abo Shady AM, El-Sheikh ME, Schagerl M (2019) Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. Envir Sci Pollut Res 26:18520–18532

    CAS  Google Scholar 

  • Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, Labeeuw L, McCauley JI, Kuzhiuparambil U, Ray P, Kahlke T, Ralph PJ (2020) Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front Plant Sci 11:e279

    Google Scholar 

  • Figueroa FL, Jerez CG, Korbee N (2013) Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Lat Am J Aquat Res 41:801–819

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    CAS  PubMed  Google Scholar 

  • Gao F, Yang HL, Li C, Peng YY, Lu MM, Jin WH, Bao JJ, Guo YM (2019) Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp. Bioresour Technol 282:118–124

    CAS  PubMed  Google Scholar 

  • Gómez C, Escudero R, Morales MM, Figueroa FL, Fernández-Sevilla JM, Acién FG (2013) Use of secondary-treated wastewater for the production of Muriellopsis sp. Appl Microbiol Biotechnol 97:2239–2249

    PubMed  Google Scholar 

  • Gonzalez-Fernandez C, Muñoz R (2017) Microalgae-based biofuels and bioproducts. Woodland Publishing, Elsevier, Duxford, From feedstock cultivation to end-products, p 540

    Google Scholar 

  • Grivalský T, Ranglová K, Câmara Manoel JA, Lakatos GE, Lhotský R, Masojídek J (2019) Development of thin-layer cascades for microalgae cultivation: milestones (review). Folia Microbiol 64:603–614

    Google Scholar 

  • Grobbelaar JU (2009a) Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. J Appl Phycol 21:489–492

    CAS  Google Scholar 

  • Grobbelaar JU (2009b) From laboratory to commercial production: a case study of a Spirulina (Arthrospira) facility in Musina, South Africa. J Appl Phycol 21:523–527

    CAS  Google Scholar 

  • Guidi F, Gojkovic Z, Venuleo M, Assunçao PACJ, Portillo E (2021) Long-term cultivation of a native Arthrospira platensis (Spirulina) strain in Pozo Izquierdo (Gran Canaria, Spain): Technical evidence for a viable production of food-grade biomass. Processes 9:1333

    CAS  Google Scholar 

  • Hadiyanto H, Elmore S, Van Gerven T, Stankiewicz A (2013) Hydrodynamic evaluation in high rate algae pond (HRAP) design. Chem Eng J 217:231–239

    CAS  Google Scholar 

  • Han D, Li Y, Hu Q (2013) Biology and commercial aspects of Haematococcus pluvialis. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley-Blackwell, Chicester, UK, pp 388–405

  • Han P, Lu Q, Fan L, Zhou W (2019) A review on the use of microalgae for sustainable aquaculture. Appl Sci 9:2377

    CAS  Google Scholar 

  • Hoffman J, Pate RC, Drennen T, Quinn JC (2017) Techno-economic assessment of open microalgae production systems. Algal Res 23:51–57

    Google Scholar 

  • Jiménez C, Cossío BR, Labella D, Niell FX (2003) The feasibility of industrial production of Spirulina (Arthrospira) in southern Spain. Aquaculture 217:179–190

    Google Scholar 

  • Kamravamanesh D, Lackner M, Herwig C (2018) Bioprocess engineering aspects of sustainable polyhydroxyalkanoate production in cyanobacteria. Bioengineering 5:1–18

    Google Scholar 

  • Kazamia E, Aldridge DC, Smith AG (2012) Synthetic ecology - a way forward for sustainable algal biofuel production? J Biotech 162:163–169

    CAS  Google Scholar 

  • Kim ZH, Park H, Hong SJ, Lim SM, Lee CG (2016) Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing. Bioproc Biosyst Engin 39:713–723

    CAS  Google Scholar 

  • Knoppová J, Masojídek JA, Pokorný J (1993) Chlorophyll fluorescence quenching caused by inorganic carbon depletion in the green alga Scenedesmus quadricauda. Photosynthetica 28:541–547

    Google Scholar 

  • Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63

    Google Scholar 

  • Kuehnle A, Schurr R (2019) Catalyzing Innovation. Brewing change: dark fermentation of photosynthetic microalgae. Indust Biotech 15:3–8

    CAS  Google Scholar 

  • Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–411

    Google Scholar 

  • Legrand J, Pruvost J (2021) A review on photobioreactor design and modelling for microalgae production. React Chem Eng 6:1134

    CAS  Google Scholar 

  • Leong YK, Chang J-S, Lee D-J (2023) Types of photobioreactors. In: Sirohi R, Pandey A, Sim S, Chang J-S, Lee D-J (eds) Photobioreactors: design and applications. Current developments in biotechnology and bioengineering, Elsevier Inc, Amsterdam, pp 33–58

    Google Scholar 

  • Levin G, Kulikovsky S, Liveanu V, Eichenbaum B, Meir A, Isaacson T, Tadmor Y, Adir N, Schuster G (2021) The desert green algae Chlorella ohadii thrives at excessively high light intensities by exceptionally enhancing the mechanisms that protect photosynthesis from photoinhibition. Plant J 106:1260–1277

    CAS  PubMed  Google Scholar 

  • Li J, Zhu D, Niu J, Shen S, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29:568–574

    CAS  PubMed  Google Scholar 

  • Li S, Li X, Ho S-H (2022) Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: an updated review. Chemosphere 291:132863

    CAS  PubMed  Google Scholar 

  • Liu J, Hu Q (2013) Chlorella: Industrial production of cell mass and chemicals. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley-Blackwell, Chicester, UK, pp 329–338

  • Malapascua JRF, Jerez CG, Sergejevová M, Figueroa FL, Masojídek J (2014) Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat Biol 22:123–140

    Google Scholar 

  • Martínez-Ruiz M, Martínez-González CA, Kim D-H, Santiesteban-Romero B, Reyes-Pardo H, Villaseñor-Zepeda KR, Meléndez-Sánchez ER, Ramírez-Gamboa D, Díaz-Zamorano AL, Sosa-Hernández JE, Coronado-Apodaca KG, Gámez-Méndez AM, Iqbal HMN, Parra-Saldivar R (2022) Microalgae bioactive compounds to topical applications products – a review. Molecules 27:3512

    PubMed  PubMed Central  Google Scholar 

  • Masojídek J, Vonshak A, Torzillo G (2011) Chlorophyll fluorescence applications in microalgal mass cultures. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications developments in applied phycology. Springer, Science+Business Media B.V., Berlin/Heidelberg, pp 277–292

    Google Scholar 

  • Masojídek J, Sergejevová M, Malapascua JR, Kopecký J (2015) Thin-layer systems for mass cultivation of microalgae: flat panels and sloping cascades. In: Bajpai R, Prokop A, Zappi M (eds) Algal Biorefinery. Springer International Publishing, Cham, pp 237–261

    Google Scholar 

  • Masojídek J, Ranglová K, Lakatos GE, Silva Benavides AM, Torzillo G (2021) Variables governing photosynthesis and growth in microalgae mass cultures (review). Processes 9:820

    Google Scholar 

  • Masojídek J, Ranglová K, Torzillo G, Celis Pla P, Rearte TA, Silva Benavides AM, Neori A, Gómez C, Caporgno MP, Alvarez Gómez F, Abdala R, Miazek K, Fávero Massocato T, Carmo da Silva J, Atzmüller R, Al Mahrouqui H, Suarez Estrella F, Lukeš M, Figueroa FL (2021b) Changes in photosynthesis, growth and biomass composition in outdoor Chlorella g-120 culture during trophic conversion from heterotrophic to phototrophic regime. Algal Res 56:102303

    Google Scholar 

  • Masojídek J, Gómez-Serrano C, Ranglová K, Cicchi B, Encinas Bogeat A, Câmara Manoel JA, Sanchez Zurano A, Silva Benavides AM, Barceló Villalobos M, Robles Carnero VA, Ördög V, Gómez Pinchetti JL, Vörös L, Arbib Z, Rogalla F, Torzillo G, Figueroa FL, Acién-Fernándéz FG (2022) Photosynthesis monitoring in microalgae cultures grown on municipal wastewater as a nutrient source in large-scale outdoor bioreactors. Biology 11:1380

    PubMed  PubMed Central  Google Scholar 

  • Masojídek J, Ranglová K, Gómez Serrano C, Carmo da Silva J, Grivalský T, Figueroa FL, Acién Fernández G (2023) Photosynthetic performance of Chlamydopodium sp. (Chlorophyta) cultures grown in outdoor bioreactors. Appl Microbiol Biotechnol 107:2249–2262

    PubMed  Google Scholar 

  • Masojídek J, Torzillo G, Koblížek M (2013) Photosynthesis in microalgal mass culture. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, Wiley-Blackwell, Chicester, UK, p 21–36

  • Moazami N, Ashori A, Ranjbar R, Tangestani M, Eghtesadi R, Nejad AS (2012) Large-scale biodiesel production using microalgae biomass of Nannochloropsis. Biomass Bioenergy 39:449–453

    CAS  Google Scholar 

  • Molina Grima E, Acién Fernández FG, Robles Medina A (2004) Downstream processing of cell-mass and products. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd., Oxford, UK, pp 215–251

  • Moreira Neto J, Komesu A, da Silva Martins LH, Gonçalves VOO, Rocha de Oliveira JA, Rai M (2019) Third generation biofuels: an overview. In: Rai M, Ingle AP (eds) Sustainable bioenergy: advances and impacts. Elsevier, Amsterdam, pp 283–298

    Google Scholar 

  • Morillas-Espana A, Lafarga T, Sánchez-Zurano A, Acién-Fernández FG, Rodríguez-Miranda E, Gómez-Serrano C, González-López CV (2021) Year-long evaluation of microalgae production in wastewater using pilot-scale raceway photobioreactors: assessment of biomass productivity and nutrient recovery capacity. Algal Res 60:102500

    Google Scholar 

  • Moulton TP, Borowitzka LJ, Vincent DJ (1987) The mass culture of Dunaliella salina for β-carotene: from pilot plant to production plant. Hydrobiologia 151:99–105

    Google Scholar 

  • Muller-Feuga A (2013) Microalgae for aquaculture: the current global situation and future trends. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley-Blackwell, Chicester, UK, pp 615–627

  • Neori A (2011) “Green water” microalgae: the leading sector in world aquaculture. J Appl Phycol 23:143–149

    Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    CAS  Google Scholar 

  • Onorato C, Rösch C (2020) Comparative life cycle assessment of astaxanthin production with Haematococcus pluvialis in different photobioreactor technologies. Algal Res 50:102005

    Google Scholar 

  • Oslan SNH, Oslan SN, Mohamad R, Tan JS, Yusoff AH, Matanjun P, Mokhtar RAM, Shapawi R, Huda N (2022) Bioprocess strategy of Haematococcus lacustris for biomass and astaxanthin production keys to commercialization: perspective and future direction. Fermentation 8:179

    CAS  Google Scholar 

  • Oswald WJ, Golueke CG (1968) Large scale production of microalgae. In: Mateless RI, Tannenbaum SR (eds) Single cell protein. MIT Press, Cambridge, MA, pp 271–305

    Google Scholar 

  • Oswald WJ, Gotaas HB, Ludwig HF, Lynch V (1953) Algae symbiosis in oxidation ponds: III. Photosynthetic pxygenation. Sewage Ind Waste 25:692–705

    CAS  Google Scholar 

  • Pagels F, Vasconcelos V, Guedes AC (2021) Carotenoids from cyanobacteria: biotechnological potential and optimization strategies. Biomolecules 11:1–21

    Google Scholar 

  • Pereira MBI, Chagas BME, Sassi R, Medeiros GF, Aguiar EM, Borba LHF, Silva EPE, Neto JCA, Rangel AHN (2019) Mixotrophic cultivation of Spirulina platensis in dairy wastewater: effects on the production of biomass, biochemical composition and antioxidant capacity. PLoS One 14:e0224294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira H, Sá M, Maia I, Rodrigues A, Teles I, Wijffels RH, Navalho J, Barbosa M (2021) Fucoxanthin production from Tisochrysis lutea and Phaeodactylum tricornutum at industrial scale. Algal Res 56:102322

    Google Scholar 

  • Posadas E, Alcántara C, García-Encina PA, Gouveia L, Guieysse B, Norvill Z, Acién FG, Markou G, Congestrijj R, Koreiviene J, Muñoz R (2017) Microalgae cultivation in wastewater. In: Gonzalez-Fernandez C, Muñoz R (eds) Microalgae-based biofuels and bioproducts. Elsevier, Amsterdam, pp 67–91

    Google Scholar 

  • Pulz O, Scheibenbogen K (2007) Photobioreactors: design and performance with respect to light energy input. In: Scheper T (ed) Bioprocess and algae reactor technology, apoptosis. Springer, Advances in Biochemical Engineering/Biotechnology, pp 123–152

    Google Scholar 

  • Quelhas PM, Trovão M, Silva JT, Machado A, Santos T, Pereira H, Varela J, Simões M, Silva JL (2019) Industrial production of Phaeodactylum tricornutum for CO2 mitigation: biomass productivity and photosynthetic efficiency using photobioreactors of different volumes. J Appl Phycol 31:2187–2196

    CAS  Google Scholar 

  • Ramos JL, Pakuts B, Godoy P, Garcia-Franco A, Duque E (2022) Addressing the energy crisis: using microbes to make biofuels. Microb Biotech 15:1026–1030

    Google Scholar 

  • Ranglová K, Lakatos GE, Câmara Manoel JA, Grivalský T, Suárez Estrella F, Acién Fernández FG, Molnár Z, Ördög V, Masojídek J (2021) Growth, biostimulant and biopesticide activity of the MACC-1 Chlorella strain cultivated outdoors in inorganic medium and wastewater. Algal Res 53:102136

    Google Scholar 

  • Richmond A, Hu Q (2013) Handbook of microalgal culture: applied phycology and biotechnology. Wiley-Blackwell, Chicester, UK, p 719 

  • Richmond A, Zhang CW (2001) Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. J Biotech 85:259–269

    CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    CAS  PubMed  Google Scholar 

  • Rodolfi L, Biondi N, Guccione A, Bassi N, D’Ottavio M, Arganaraz G, Tredici MR (2017) Oil and eicosapentaenoic acid production by the diatom Phaeodactylum tricornutum cultivated outdoors in Green Wall Panel (GWP®) reactors. Biotechnol Bioeng 114:2204–2210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz J, Olivieri G, de Vree J, Bosma R, Willems P, Reith JH, Eppink MHM, Kleinegris DMM, Wijffels RH, Barbosa MJ (2016) Towards industrial products from microalgae. Energy Environ Sci 9:3036–3043

    Google Scholar 

  • Ruiz J, Wijffels RH, Dominguez M, Barbosa MJ (2022) Heterotrophic vs autotrophic production of microalgae: bringing some light into the everlasting cost controversy. Algal Res 64:102698

    Google Scholar 

  • San Pedro A, González-López CV, Acién FG, Molina-Grima E (2015) Outdoor pilot production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in raceway ponds. Algal Res 8:205–213

    Google Scholar 

  • Sánchez Zurano JA, C’ardenas G, Gómez Serrano C, Morales Amaral M, Acién-Fernandez FG, Fernández Sevilla JM, Molina Grima E (2020) Year-long assessment of a pilot-scale thin-layer reactor for microalgae wastewater treatment. Variation in the microalgae-bacteria consortium and the impact of environmental conditions. Algal Res 50:101983

    Google Scholar 

  • Sarker NK, Kaparaju P (2023) A critical review on the status and progress of microalgae cultivation in outdoor photobioreactors conducted over 35 years (1986–2021). Energies 16:3105

    CAS  Google Scholar 

  • Šetlík I, Šust V, Málek I (1970) Dual-purpose open circulation units for large-scale culture of algae in temperate zones. I. Basic design considerations and scheme of a pilot plant. Algol Stud 1:111–164

    Google Scholar 

  • Shimamatsu H (2004) Mass production of Spirulina, an edible alga. Hydrobiologia 512:39–44

    Google Scholar 

  • Silva Benavides AM, Torzillo G, Kopecký J, Masojídek J (2013) Productivity and biochemical composition of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds. Biomass Bioenergy 54:115–122

    CAS  Google Scholar 

  • Silva-Benavides AM, Torzillo G (2012) Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. J Appl Phycol 24:267–276

    CAS  Google Scholar 

  • Singh J, Dhar DW (2019) Overview of carbon capturetechnology: microalgal biorefinery concept and state-of-the-art. Front Mar Sci 6:29

    Google Scholar 

  • Singh S, Arad SM, Richmond A (2000) Extracellular polysaccharide production in outdoor mass cultures of Porphyridium sp. in flat plate glass reactors. J Appl Phycol 12:269–275

    CAS  Google Scholar 

  • Sirohi R, Pandey A, Sim S, Chang J-S, Lee D-J (eds) (2023) Photobioreactors: design and applications. Current developments in biotechnology and bioengineering. Elsevier Inc., Elsevier, Netherlands, p 305 

  • Soni RA, Sudhakar K, Rana RS (2019) Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Rep 5:27–336

    Google Scholar 

  • Soong P (1980) Production and development of Chlorella and Spirulina in Taiwan. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 97–113

    Google Scholar 

  • Stachowiak B, Szulc P (2021) Astaxanthin for the food industry. Molecules 26:2666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sukenik A (1999) Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 41–56

    Google Scholar 

  • Sung YJ, Joun J, Yu BS, Sim SJ (2023) Photobioreactor systems for production of astaxanthin from microalgae. In: Pandey A (ed) Current developments in biotechnology and bioengineering. Photobioreactors: Design and applications. Elsevier, Amsterdam, pp 229–246

    Google Scholar 

  • Sutherland DL, Heubeck S, Park J, Turnbull MH, Craggs RJ (2018) Seasonal performance of a full-scale wastewater treatment enhanced pond system. Water Res 136:150–159

    CAS  PubMed  Google Scholar 

  • Tawfiq S, Abu-Rezq Al-Musallam L, Al-Shimmari J, Dias P (1999) Optimum production conditions for different high-quality marine algae. Hydrobiologia 403:97–107

    Google Scholar 

  • Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11:61–74

    Google Scholar 

  • Torzillo G, Accolla P, Pinzani E, Masojidek J (1996) In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors. J Appl Phycol 8:283–291

    CAS  Google Scholar 

  • Torzillo G, Chini Zittelli G, Silva Benavides AM, Ranglova K, Masojidek J (2021) Culturing of microalgae for food applications. In: Lafarga T, Acién Fernandez FG (eds) Cultured microalgae for the food industry. Current and potential applications, 1st edn. Elsevier, Amsterdam, pp 1–48

    Google Scholar 

  • Torzillo G, Zittelli GC, Cicchi B, Diano M, Parente M, Silva Benavides AM, Esposito S, Touloupakis E (2022) Effect of plate distance on light conversion efficiency of a Synechocystis culture grown outdoors in a multiplate photobioreactor. Sci Total Envir 842:156840

    CAS  Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    CAS  Google Scholar 

  • Tredici MR, Rodolfi L, Biondi N, Bassi N, Sampietro G (2016) Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall panel (GWP) plant. Algal Res 19:253–263

    Google Scholar 

  • Vázquez-Romero B, Perales JA, Pereira H, Barbosa M, Ruiz J (2022) Techno-economic assessment of microalgae production, harvesting and drying for food, feed, cosmetics, and agriculture. Sci Total Environ 837:155742

    PubMed  Google Scholar 

  • Vonshak A, Cohen Z, Richmond A (1985) The feasibility of mass cultivation of Porphyridium. Biomass 8:13–25

    CAS  Google Scholar 

  • Vonshak A, Torzillo G, Masojidek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Envir 24:1113–1118

    Google Scholar 

  • Walker DA (2009) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21:509–517

    Google Scholar 

  • Wassink EC, Kok B, van Oorschot JLP (1953) Chapter 5. The efficiency of light energy conversion in Chlorella cultures compared with higher plants. In: Burlew J (ed) Algal culture from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, USA, pp 55–62

    Google Scholar 

  • White S, Anandraj A, Bux F (2011) PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Biores Technol 102:1675–1682

    CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    CAS  PubMed  Google Scholar 

  • Xiaogang H, Mohammed J, Jingyuan W, Zheng Y, Li X, Salama E-S (2020) Microalgal growth coupled with wastewater treatment in open and closed systems for advanced biofuel generation. Biomass Conv Bioref 12:1939–2195

    Google Scholar 

  • Yanes-Roca C, Holzer A, Mraz J, Veselý L, Malinovskyi O, Policar T (2020) Improvements on live feed enrichments for pikeperch (Sander lucioperca) larval culture. Animals 10:401

    PubMed  PubMed Central  Google Scholar 

  • Yousuf A (2020) Microalgae cultivation for biofuel production. Elsevier, Amsterdam, p 361

    Google Scholar 

  • Zhang CW, Zmora O, Kopel R, Richmond A (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp (Eustigmatophyceae). Aquaculture 195:35–49

    Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotech 19:153–159

    CAS  PubMed  Google Scholar 

  • Zhu B, Sun F, Yang M, Lu L, Yang G, Pan K (2014) Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds. Biores Technol 174:53–59

  • Zittelli GC, Biondi N, Rodolfi L, Tredici MR (2013) Photobioreactors for mass production of microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley-Blackwell, Chicester, UK, pp 225–266

  • Zmora O, Grosse DJ, Zou N, Samocha TM (2013) Microalgae for aquaculture: practical implications. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley-Blackwell, Chicester, UK, pp 628–652

Download references

Acknowledgements

The authors thank Dr Tomáš Grivalský, Dr Gergely E. Lakatos, Ms Soňa Pekařová, Mr João Câmara Manoel and Mr Michal Bureš for their assistance.

Funding

This work was supported by the MULTI-STR3AM project which received funding from Bio-based Industries Joint Undertaking under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement No 887227) and PhotosynH2, Horizon – EIC-2021 Pathfinder challenges-01 (Project 101070948) and in part by the Czech Academy of Sciences in the framework of the Strategie AV21 programme – Food for Future as well as a special grant 2022 awarded to J.M. as a holder of the Research Professor (DSc.) degree.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: J. M., K. Š., G. T., G. C. Z., R. L.; methodology: J. M., K. Š., G. Z. C., G. T.; investigation and data analysis: J. M., K. Š., G. T., G. C. Z.; writing—figure preparation: J. M., K. Š., R. L.; writing—original draft preparation: J. M.; writing—review and editing: J. M., K. Š., G. T., G. C. Z., R. L.; post-editing: J. M., G. T.; funding acquisition: J. M., R. L. All authors read, edited and approved the manuscript.

Corresponding author

Correspondence to Jiří Masojídek.

Ethics declarations

Ethics approval

This article does not contain any research involving humans or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 456 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masojídek, J., Lhotský, R., Štěrbová, K. et al. Solar bioreactors used for the industrial production of microalgae. Appl Microbiol Biotechnol 107, 6439–6458 (2023). https://doi.org/10.1007/s00253-023-12733-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-023-12733-8

Keywords

Navigation