Skip to main content

Advertisement

Log in

Enhancement of anti-tumor activity in melanoma using arginine deiminase fused with 30Kc19α protein

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Arginine deiminase (ADI) is a microbial-derived enzyme which catalyzes the conversion of l-arginine into l-citrulline. ADI originating from Mycoplasma has been reported to present anti-tumor activity against arginine-auxotrophic tumors, including melanoma. Melanoma cells are sensitive to arginine depletion due to reduced expression of argininosuccinate synthase 1 (ASS1), a key enzyme for arginine biosynthesis. However, clinical applications of recombinant ADI for melanoma treatment present some limitations. Since recombinant ADI is not human-derived, it shows instability, proteolytic degradation, and antigenicity in human serum. In addition, there is a problem of drug resistance issue due to the intracellular expression of once-silenced ASS1. Moreover, recombinant ADI proteins are mainly expressed as inclusion body forms in Escherichia coli and require a time-consuming refolding process to turn them back into active form. Herein, we propose fusion of recombinant ADI from Mycoplasma hominis and 30Kc19α, a cell-penetrating protein which also increases stability and soluble expression of cargo proteins, to overcome these problems. We inserted matrix metalloproteinase-2 cleavable linker between ADI and 30Kc19α to increase enzyme activity in melanoma cells. Compared to ADI, ADI-LK-30Kc19α showed enhanced solubility, stability, and cell penetration. The fusion protein demonstrated selective cytotoxicity and reduced drug resistance in melanoma cells, thus would be a promising strategy for the improved efficacy in melanoma treatment.

Key points

Fusion of ADI with 30Kc19α enhances soluble expression and productivity of recombinant ADI in E. coli

30Kc19α protects ADI from the proteolytic degradation by shielding effect, helping ADI to remain active

Intracellular delivery of ADI by 30Kc19α overcomes ADI resistance in melanoma cells by degrading intracellularly expressed arginine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its supplementary materials.

References

  • Ahn K-Y, Lee B, Han K-Y, Song J-A, Lee DS, Lee J (2014) Synthesis of Mycoplasma arginine deiminase in E. coli using stress-responsive proteins. Enzyme Microb Technol 63:46–49

    Article  CAS  PubMed  Google Scholar 

  • Changou CA, Chen Y-R, Xing L, Yen Y, Chuang FY, Cheng RH, Bold RJ, Ann DK, Kung H-J (2014) Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc Natl Acad Sci USA 111(39):14147–14152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SS, Rhee WJ, Park TH (2005) Beneficial effect of silkworm hemolymph on a CHO cell system: inhibition of apoptosis and increase of EPO production. Biotechnol Bioeng 91(7):793–800

    Article  CAS  PubMed  Google Scholar 

  • Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, Szlosarek PW (2010) Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer 126(12):2762–2772

    CAS  PubMed  Google Scholar 

  • Dhankhar R, Gupta V, Kumar S, Kapoor RK, Gulati P (2020) Microbial enzymes for deprivation of amino acid metabolism in malignant cells: biological strategy for cancer treatment. Appl Microbiol Biotechnol 104(7):2857–2869

    Article  CAS  PubMed  Google Scholar 

  • Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA (2004) Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer 100(4):826–833

    Article  CAS  PubMed  Google Scholar 

  • Do BH, Park S, Kwon GG, Nguyen MT, Kang HJ, Song J-A, Yoo J, Nguyen AN, Jang J, Jang M (2017) Soluble expression and purification of bioactive interleukin 33 in E coli. Biotechnol Bioprocess Eng 22(3):256–264

    Article  CAS  Google Scholar 

  • El-Sayed AS, Shindia AA, Abou Zeid AA, Yassin AM, Sitohy MZ, Sitohy B (2019) Aspergillus nidulans thermostable arginine deiminase-Dextran conjugates with enhanced molecular stability, proteolytic resistance, pharmacokinetic properties and anticancer activity. Enzyme Microb Technol 131:109432

    Article  CAS  PubMed  Google Scholar 

  • Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA (2002) Pegylated arginine deiminase (ADI-SS-PEG 20,000 MW) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res 62(19):5443–5450

    CAS  PubMed  Google Scholar 

  • Fayura LR, Boretsky YR, Pynyaha YV, Wheatley DN, Sibirny AA (2013) Improved method for expression and isolation of the Mycoplasma hominis arginine deiminase from the recombinant strain of Escherichia coli. J Biotech 167(4):420–426

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Springer, pp 571–607

  • Hall PE, Lewis R, Syed N, Shaffer R, Evanson J, Ellis S, Williams M, Feng X, Johnston A, Thomson JA (2019) A phase I study of pegylated arginine deiminase (Pegargiminase), cisplatin, and pemetrexed in argininosuccinate synthetase 1-deficient recurrent high-grade glioma arginine deprivation therapy in recurrent high-grade gliomas. Clin Cancer Res 25(9):2708–2716

    Article  CAS  PubMed  Google Scholar 

  • Hussain Z, Khan S, Imran M, Sohail M, Shah SWA, de Matas M (2019) PEGylation: A promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv Transl Res 9(3):721–734

    Article  CAS  PubMed  Google Scholar 

  • Husson A, Brasse-Lagnel C, Fairand A, Renouf S, Lavoinne A (2003) Argininosuccinate synthetase from the urea cycle to the citrulline–NO cycle. Eur J Biochem 270(9):1887–1899

    Article  CAS  PubMed  Google Scholar 

  • Ji JX, Cochrane DR, Tessier-Cloutier B, Chen SY, Ho G, Pathak KV, Alcazar IN, Farnell D, Leung S, Cheng A (2020) Arginine depletion therapy with ADI-PEG20 limits tumor growth in argininosuccinate synthase–deficient ovarian cancer, including small-cell carcinoma of the ovary, hypercalcemic type arginine depletion to treat rare ovarian cancers. Clin Cancer Res 26(16):4402–4413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jobin PG, Butler GS (1864) Overall CM (2017) New intracellular activities of matrix metalloproteinases shine in the moonlight. Biochim Biophys Acta - Mol 11:2043–2055

    Google Scholar 

  • Kang Y-S, Song J-A, Han K-Y, Lee J (2015) Escherichia coli EDA is a novel fusion expression partner to improve solubility of aggregation-prone heterologous proteins. J Biotechnol 194:39–47

    Article  CAS  PubMed  Google Scholar 

  • Kawatra A, Dhankhar R, Gulati P (2021) Microbial arginine deiminase: a multifaceted green catalyst in biomedical sciences. Int J Biol Macromol 196:151–162

    Article  PubMed  Google Scholar 

  • Kim EJ, Park TH (2003) Anti-apoptosis engineering. Biotechnol. Bioprocess Eng 8(2):76–82

    Article  CAS  Google Scholar 

  • Kim EJ, Rhee WJ, Park TH (2004) Inhibition of apoptosis by a Bombyx mori gene. Biotechnol Prog 20(1):324–329

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Kim EJ, Rhee WJ, Park TH (2005) Enhanced production of recombinant protein in Escherichia coli using silkworm hemolymph. Biotechnol Bioprocess Eng 10(4):353

    Article  CAS  Google Scholar 

  • Kim RH, Coates JM, Bowles TL, McNerney GP, Sutcliffe J, Jung JU, Gandour-Edwards R, Chuang FY, Bold RJ, Kung H-J (2009) Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res 69(2):700–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SHL, Cho S, Kim S, Kwon J, Lee J, Koh RH, Park JH, Lee H, Park TH, Hwang NS (2022) Cellular direct conversion by cell penetrable OCT4-30Kc19 protein and BMP4 growth factor. Biomater Res 26(1):1–18

    Article  CAS  Google Scholar 

  • Lee H, An YH, Kim TK, Ryu J, Park GK, Park MJ, Ko J, Kim H, Choi HS, Hwang NS (2021) Enhancement of wound healing efficacy by increasing the stability and skin-penetrating property of bFGF using 30Kc19α-based fusion protein. Adv Biol 5(1):2000176

    Article  CAS  Google Scholar 

  • Lee H, Kim SHL, Yoon H, Ryu J, Park HH, Hwang NS, Park TH (2020) Intracellular delivery of recombinant RUNX2 facilitated by cell-penetrating protein for the osteogenic differentiation of hMSCs. ACS Biomater Sci Eng 6(9):5202–5214

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Park HH, Kim JA, Park JH, Ryu J, Choi J, Lee J, Rhee WJ, Park TH (2014) Enzyme delivery using the 30Kc19 protein and human serum albumin nanoparticles. Biomater 35(5):1696–1704

    Article  CAS  Google Scholar 

  • Lindgren M, Hällbrink M, Prochiantz A, Langel Ü (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21(3):99–103

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Tsai W-B, Wangpaichitr M, Tsukamoto T, Savaraj N, Feun LG, Kuo MT (2013) Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction. Mol Cancer Ther 12(11):2581–2590

    Article  CAS  PubMed  Google Scholar 

  • Mäe M, Langel Ü (2006) Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol 6(5):509–514

    Article  PubMed  Google Scholar 

  • Mishra P, Nayak B, Dey R (2016) PEGylation in anti-cancer therapy: an overview. Asian J Pharm Sci 11(3):337–348

    Article  Google Scholar 

  • Miyazaki K, Takaku H, Umeda M, Fujita T, Huang W, Kimura T, Yamashita J, Horio T (1990) Potent growth inhibition of human tumor cells in culture by arginine deiminase purified from a culture medium of a Mycoplasma-infected cell line. Cancer Res 50(15):4522–4527

    CAS  PubMed  Google Scholar 

  • Ni Y, Schwaneberg U, Sun Z-H (2008) Arginine deiminase, a potential anti-tumor drug. Cancer Lett 261(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Oginsky EL (1957) Isolation and determination of arginine and citrulline. Methods Enzymol 3:639–643

  • Oh-Hashi K, Furuta E, Fujimura K, Hirata Y (2017) Application of a novel HiBiT peptide tag for monitoring ATF4 protein expression in Neuro2a cells. Biochem Biophys Rep 12:40–45

    PubMed  PubMed Central  Google Scholar 

  • Phan NM, Nguyen TL, Kim J (2022) Nanozyme-based enhanced cancer immunotherapy. Tissue Eng Regen Med 19(2):237–252

    Article  CAS  PubMed  Google Scholar 

  • Park G (2022) Enhancement of solubility, cell penetration, and stability of arginine deiminase using 30Kc19α for effective melanoma treatment. Dissertation, Seoul National University

  • Park HH, Sohn Y, Yeo JW, Park JH, Lee HJ, Ryu J, Rhee WJ, Park TH (2014a) Dimerization of 30Kc19 protein in the presence of amphiphilic moiety and importance of Cys-57 during cell penetration. Biotechnol J 9(12):1582–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HH, Sohn Y, Yeo JW, Park JH, Lee HJ, Ryu J, Rhee WJ, Park TH (2014b) Identification and characterization of a novel cell-penetrating peptide of 30Kc19 protein derived from Bombyx mori. Process Biochem 49(9):1516–1526

    Article  CAS  Google Scholar 

  • Park HH, Woo YH, Ryu J, Lee HJ, Park JH, Park TH (2017) Enzyme delivery using protein-stabilizing and cell-penetrating 30Kc19α protein nanoparticles. Process Biochem 63:76–83

    Article  CAS  Google Scholar 

  • Park JH, Lee JH, Park HH, Rhee WJ, Choi SS, Park TH (2012a) A protein delivery system using 30Kc19 cell-penetrating protein originating from silkworm. Biomater 33(35):9127–9134

    Article  CAS  Google Scholar 

  • Park JH, Park HH, Choi SS, Park TH (2012b) Stabilization of enzymes by the recombinant 30Kc19 protein. Process Biochem 47(1):164–169

    Article  CAS  Google Scholar 

  • Patil M, Bhaumik J, Babykutty S, Banerjee U, Fukumura D (2016) Arginine dependence of tumor cells: targeting a chink in cancer’s armor. Oncogene 35(38):4957–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira AMM, Strasberg-Rieber M, Rieber M (2005) Invasion-associated MMP-2 and MMP-9 are up-regulated intracellularly in concert with apoptosis linked to melanoma cell detachment. Clin Exp Metastasis 22(4):285–295

    Article  CAS  PubMed  Google Scholar 

  • Phillips MM, Sheaff MT, Szlosarek PW (2013) Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges. Cancer Res Treat 45(4):251

    Article  PubMed  PubMed Central  Google Scholar 

  • Redondo P, Lloret P, Idoate M, Inoges S (2005) Expression and serum levels of MMP-2 and MMP-9 during human melanoma progression. Clin Exp Dermatol 30(5):541–545

    Article  CAS  PubMed  Google Scholar 

  • Rhee WJ, Kim EJ, Park TH (1999) Kinetic effect of silkworm hemolymph on the delayed host cell death in an insect cell-baculovirus system. Biotechnol Prog 15(6):1028–1032

    Article  CAS  PubMed  Google Scholar 

  • Rhee WJ, Lee EH, Park TH (2009) Expression of Bombyx mori 30Kc19 protein in Escherichia coli and its anti-apoptotic effect in Sf9 cell. Biotechnol Bioprocess Eng 14(5):645

    Article  CAS  Google Scholar 

  • Riess C, Shokraie F, Classen CF, Kreikemeyer B, Fiedler T, Junghanss C, Maletzki C (2018) Arginine-depleting enzymes–an increasingly recognized treatment strategy for therapy-refractory malignancies. Cell Physiol Biochem 51(2):854–870

    Article  CAS  PubMed  Google Scholar 

  • Roomi M, Monterrey J, Kalinovsky T, Rath M, Niedzwiecki A (2009) Patterns of MMP-2 and MMP-9 expression in human cancer cell lines. Oncol Rep 21(5):1323–1333

    CAS  PubMed  Google Scholar 

  • Ryu J, Hwang NS, Park HH, Park TH (2020) Protein-based direct reprogramming of fibroblasts to neuronal cells using 30Kc19 protein and transcription factor Ascl1. Int J Biochem Cell Biol 121:105717

    Article  CAS  PubMed  Google Scholar 

  • Ryu J, Kim H, Park HH, Lee HJ, Park JH, Rhee WJ, Park TH (2016a) Protein-stabilizing and cell-penetrating properties of α-helix domain of 30Kc19 protein. Biotechnol J 11(11):1443–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu J, Park HH, Park JH, Lee HJ, Rhee WJ, Park TH (2016b) Soluble expression and stability enhancement of transcription factors using 30Kc19 cell-penetrating protein. Appl Microbiol Biotechnol 100(8):3523–3532

    Article  CAS  PubMed  Google Scholar 

  • Schneier M, Razdan S, Miller AM, Briceno ME, Barua S (2020) Current technologies to endotoxin detection and removal for biopharmaceutical purification. Biotechnol Bioeng 117(8):2588–2609

    Article  CAS  PubMed  Google Scholar 

  • Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99(4):303–310

    Article  CAS  PubMed  Google Scholar 

  • Solli AI, Fadnes B, Winberg J-O, Uhlin-Hansen L, Hadler-Olsen E (2013) Tissue-and cell-specific co-localization of intracellular gelatinolytic activity and matrix metalloproteinase 2. J Histochem Cytochem 61(6):444–461

    Article  PubMed  PubMed Central  Google Scholar 

  • Son B, Yoon H, Ryu J, Lee H, Joo J, Park HH, Park TH (2022) Enhanced efficiency of generating human-induced pluripotent stem cells using Lin28-30Kc19 fusion protein. Front Bioeng Biotechnol 10:911614

    Article  PubMed  PubMed Central  Google Scholar 

  • Song J-A, Lee D-S, Park J-S, Han K-Y, Lee J (2011) A novel Escherichia coli solubility enhancer protein for fusion expression of aggregation-prone heterologous proteins. Enzyme Microb Technol 49(2):124–130

    Article  CAS  PubMed  Google Scholar 

  • Sun N, Zhao X (2022) Argininosuccinate synthase 1, arginine deprivation therapy and cancer management. Front Pharmacol 13:935553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai W-B, Aiba I, Lee S-y, Feun L, Savaraj N, Kuo MT (2009) Resistance to arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-1α/Sp4. Mol Cancer Ther 8(12):3223–3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F-LL, Yeh T-H, Chen Y-L, Chiu Y-C, Cheng J-C, Wei M-F, Shen L-J (2014) Intracellular delivery of recombinant arginine deiminase (rADI) by heparin-binding hemagglutinin adhesion peptide restores sensitivity in rADI-resistant cancer cells. Mol Pharm 11(8):2777–2786

    Article  CAS  PubMed  Google Scholar 

  • Yang J-P, Ma X-X, He Y-X, Li W-F, Kang Y, Bao R, Chen Y, Zhou C-Z (2011) Crystal structure of the 30 K protein from the silkworm Bombyx mori reveals a new member of the β-trefoil superfamily. J Struct Biol 175(1):97–103

    Article  CAS  PubMed  Google Scholar 

  • Yao Q, Kou L, Tu Y, Zhu L (2018) MMP-responsive ‘smart’ drug delivery and tumor targeting. Trends Pharmacol Sci 39(8):766–781

    Article  CAS  PubMed  Google Scholar 

  • Yeh T-H, Chen Y-R, Chen S-Y, Shen W-C, Ann DK, Zaro JL, Shen L-J (2016) Selective intracellular delivery of recombinant arginine deiminase (ADI) using pH-sensitive cell penetrating peptides to overcome ADI resistance in hypoxic breast cancer cells. Mol Pharm 13(1):262–271

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Liu C, Kim B-G, Lee D-Y (2015) Synthetic fusion protein design and applications. Biotechnol Adv 33(1):155–164

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Liu M-r, Wan H-t (2014) Discussion about several potential drawbacks of PEGylated therapeutic proteins. Biol Pharm Bull 37(3):335–339

    Article  CAS  PubMed  Google Scholar 

  • Zúñiga M, Pérez G, González-Candelas F (2002) Evolution of arginine deiminase (ADI) pathway genes. Mol Phylogenetics Evol 25(3):429–444

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A4A3078645, 2021R1C1C1014606).

Author information

Authors and Affiliations

Authors

Contributions

HL and GP collected data and evidence. HHP and THP conceived and designed the study. HL, GP, and HHP wrote the manuscript. HL drew the figures. HL, GP, SK, BS, JJ, and HHP directed and validated the data analysis. All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

Corresponding authors

Correspondence to Hee Ho Park or Tai Hyun Park.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 551 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Park, G., Kim, S. et al. Enhancement of anti-tumor activity in melanoma using arginine deiminase fused with 30Kc19α protein. Appl Microbiol Biotechnol 106, 7531–7545 (2022). https://doi.org/10.1007/s00253-022-12218-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-022-12218-0

Keywords

Navigation