Abstract
Peridinin is a light-harvesting carotenoid present in phototrophic dinoflagellates and has great potential for new drug applications and cosmetics development. Herein, the effects of irradiance mediated by light-emitting diodes on growth performance, carotenoid and fatty acid profiles, and antioxidant activity of the endosymbiotic dinoflagellate Durusdinium glynnii were investigated. The results demonstrate that D. glynnii is particularly well adapted to low-light conditions; however, it can be high-light-tolerant. In contrast to other light-harvesting carotenoids, the peridinin accumulation in D. glynnii occurred during high-light exposure. The peridinin to chlorophyll-a ratio varied as a function of irradiance, while the peridinin to total carotenoids ratio remained stable. Under optimal irradiance for growth, there was a peak in docosahexaenoic acid (DHA) bioaccumulation. This study contributes to the understanding of the photoprotective role of peridinin in endosymbiont dinoflagellates and highlights the antioxidant activity of peridinin-rich extracts.
Key Points
• Peridinin has a protective role against chlorophyll photo-oxidation
• High light conditions induce cellular peridinin accumulation
• D. glynnii accumulates high amounts of DHA under optimal light supply
Graphical abstract





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Alexandre MTA, Lührs DC, Van Stokkum IHM, Hiller R, Groot ML, Kennis JTM, Van Grondelle R (2007) Triplet state dynamics in peridinin-chlorophyll-a-protein: a new pathway of photoprotection in LHCs? Biophys J 93:2118–2128. https://doi.org/10.1529/biophysj.107.106674
AOAC (2005) Official methods of the association of official analytical chemists, 16th ed. AOAC, Arlington.
APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA-AWWA-WEF, Washington
Ara AM, Shakil Bin Kashem M, van Grondelle R, Wahadoszamen M (2020) Stark fluorescence spectroscopy on peridinin–chlorophyll–protein complex of dinoflagellate, Amphidinium carterae. Photosynth Res 143:233–239. https://doi.org/10.1007/s11120-019-00688-9
Arnoldussen IAC, Kiliaan AJ (2014) Impact of DHA on metabolic diseases from womb to tomb. Mar Drugs 12:6190–6212. https://doi.org/10.3390/MD12126190
Assunção J, Catarina Guedes A, Xavier Malcata F (2017) Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates. Mar Drugs 15:393. https://doi.org/10.3390/md15120393
Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689. https://doi.org/10.1146/annurev.ecolsys.34.011802.132417
Beedessee G, Hisata K, Roy MC, Van Dolah FM, Satoh N, Shoguchi E (2019) Diversified secondary metabolite biosynthesis gene repertoire revealed in symbiotic dinoflagellates. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-018-37792-0
Bernasconi R, Stat M, Koenders A, Huggett MJ (2019) Global networks of Symbiodinium-bacteria within the coral holobiont. Microb Ecol 77:794–807. https://doi.org/10.1007/s00248-018-1255-4
Brading P, Warner ME, Davey P, Smith DJ, Achterberg EP, Suggett DJ (2011) Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol Oceanogr 56:927–938. https://doi.org/10.4319/lo.2011.56.3.0927
Camacho FG, Rodríguez JJG, Mirón AS, Belarbi EH, Chisti Y, Grima EM (2011) Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga. Process Biochem 46:936–944. https://doi.org/10.1016/J.PROCBIO.2011.01.005
Carreto JI, Catoggio JA (1977) An indirect method for the rapid estimation of carotenoid contents in Phaeodactylum tricornutum: possible application to other marine algae. Mar Biol 40:109–116. https://doi.org/10.1007/BF00396255
Ceh J, Kilburn MR, Cliff JB, Raina J-B, van Keulen M, Bourne DG (2013) Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates. Ecol Evol 3:2393–2400. https://doi.org/10.1002/ece3.642
Chen Z, Shao S, He Y, Luo Q, Zheng M, Zheng M, Chen B, Wang M (2020) Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp PW1. Bioresour Technol 302:122806. https://doi.org/10.1016/j.biortech.2020.122806
Conceição D, Lopes RG, Derner RB, Cella H, Carmodo APB, Montes D’Oca MG, Petersen R, Passos MF, Vargas JVC, Galli-Terasawa LV, Kava V (2020) The effect of light intensity on the production and accumulation of pigments and fatty acids in Phaeodactylumtricornutum. J Appl Phycol 32:1017–1025
Conde TA, Neves BF, Couto D, Melo T, Neves B, Costa M, Silva J, Domingues P, Domingues MR (2021) Microalgae as sustainable bio-factories of healthy lipids: evaluating fatty acid content and antioxidant activity. Mar Drugs 19:357. https://doi.org/10.3390/MD19070357/S1
Coulombier N, Nicolau E, Le Déan L, Barthelemy V, Schreiber N, Brun P, Lebouvier N, Jauffrais T (2020) Effects of nitrogen availability on the antioxidant activity and carotenoid content of the microalgae Nephroselmis sp. Mar Drugs 18:453. https://doi.org/10.3390/MD18090453
Davies SW, Ries JB, Marchetti A, Castillo KD (2018) Symbiodinium functional diversity in the coral Siderastrea siderea is influenced by thermal stress and reef environment, but not ocean acidification. Front Mar Sci 5:150. https://doi.org/10.3389/fmars.2018.00150
de Dantas DMM, Oliveira CYB, Costa RMPB, das Carneiro-da-Cunha MG, Gálvez AO, de Bezerra RS (2019) Evaluation of antioxidant and antibacterial capacity of green microalgae Scenedesmus subspicatus. Food Sci Technol Int 25:318–326
Di Valentin M, Dal Farra MG, Galazzo L, Albertini M, Schulte T, Hofmann E, Carbonera D (2016) Distance measurements in peridinin-chlorophyll a-protein by light-induced PELDOR spectroscopy. Analysis of triplet state localization. Biochim Biophys Acta - Bioenerg 1857:1909–1916. https://doi.org/10.1016/J.BBABIO.2016.09.008
Djuricic I, Calder PC (2021) Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: an update for 2021. Nutrients 13:2421. https://doi.org/10.3390/NU13072421
Dorrell RG, Nisbet RER, Barbrook AC, Rowden SJL, Howe CJ (2019) Integrated genomic and transcriptomic analysis of the peridinin dinoflagellate Amphidinium carterae plastid. Protist 170:358–373. https://doi.org/10.1016/j.protis.2019.06.001
Eckert RJ, Reaume AM, Sturm AB, Studivan MS, Voss JD (2020) Depth influences Symbiodiniaceae associations among Montastraea cavernosa corals on the Belize barrier reef. Front Microbiol 11:518. https://doi.org/10.3389/fmicb.2020.00518
George B, Pancha I, Desai C, Chokshi K, Paliwal C, Ghosh T, Mishra S (2014) Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – a potential strain for bio-fuel production. Bioresour Technol 171:367–374. https://doi.org/10.1016/J.BIORTECH.2014.08.086
Guedes AC, Amaro HM, Gião MS, Malcata FX (2013) Optimization of ABTS radical cation assay specifically for determination of antioxidant capacity of intracellular extracts of microalgae and cyanobacteria. Food Chem 138:638–643. https://doi.org/10.1016/J.FOODCHEM.2012.09.106
Haoujar I, Cacciola F, Abrini J, Mangraviti D, Giuffrida D, El Majdoub YO, Kounnoun A, Miceli N, Taviano MF, Mondello L, Rigano F, Senhaji NS (2019) The contribution of carotenoids, phenolic compounds, and flavonoids to the antioxidative properties of marine microalgae isolated from Mediterranean Morocco. Molecules 24:4037. https://doi.org/10.3390/MOLECULES24224037
Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272(5269):1788–1791. https://doi.org/10.1126/science.272.5269.1788
Islabão CA, Mendes CRB, Russo ADPG, Odebrecht C (2016) Effects of irradiance on growth, pigment content and photosynthetic efficiency on three peridinin-containing dinoflagellates. J Exp Mar Bio Ecol 485:73–82. https://doi.org/10.1016/j.jembe.2016.08.012
Iwasaki K, Evenhuis C, Tamburic B, Kuzhiumparambil U, O’Connor W, Ralph P, Szabó M (2021) Improving light and CO2 availability to enhance the growth rate of the diatom. Chaetoceros Muelleri Algal Res 55:102234. https://doi.org/10.1016/j.algal.2021.102234
Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194
Jung JH, Sirisuk P, Ra CH, Kim JM, Jeong GT, Kim SK (2019) Effects of green LED light and three stresses on biomass and lipid accumulation with two-phase culture of microalgae. Process Biochem 77:93–99. https://doi.org/10.1016/j.procbio.2018.11.014
Khozin-Goldberg I, Iskandarov U, Cohen Z (2011) LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl Microbiol Biotechnol 91:905–915. https://doi.org/10.1007/S00253-011-3441-X
Kilcoyne J, McCoy A, Burrell S, Krock B, Tillmann U (2019) Effects of temperature, growth media, and photoperiod on growth and toxin production of Azadinium spinosum. Mar Drugs 17:489. https://doi.org/10.3390/MD17090489
Kita M, Ohishi N, Washida K, Kondo M, Koyama T, Yamada K, Uemura D (2005) Symbioimine and neosymbioimine, amphoteric iminium metabolites from the symbiotic marine dinoflagellate Symbiodinium sp. Bioorganic Med Chem 13:5253–5258. https://doi.org/10.1016/j.bmc.2005.05.064
Kitaya Y, Xiao L, Masuda A, Ozawa T, Tsuda M, Omasa K (2008) Effects of temperature, photosynthetic photon flux density, photoperiod and O2 and CO2 concentrations on growth rates of the symbiotic dinoflagellate, Amphidinium sp. Ninet Int Seaweed Symp 20:287–292. https://doi.org/10.1007/978-1-4020-9619-8_36
Kneeland J, Hughen K, Cervino J, Hauff B, Eglinton T (2013) Lipid biomarkers in Symbiodinium dinoflagellates: new indicators of thermal stress. Coral Reefs 32:923–934. https://doi.org/10.1007/S00338-013-1076-3/FIGURES/8
Kris-Etherton PM, Richter CK, Bowen KJ, Skulas-Ray AC, Jackson KH, Petersen KS, Harris WS (2019) Recent clinical trials shed new light on the cardiovascular benefits of omega-3 fatty acids. Methodist Debakey Cardiovasc J 15:171–178. https://doi.org/10.14797/MDCJ-15-3-171
LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580. https://doi.org/10.1016/j.cub.2018.07.008
Laloi C, Havaux M (2015) Key players of singlet oxygen-induced cell death in plants. Front Plant Sci 6:39. https://doi.org/10.3389/fpls.2015.00039
Langenbach D, Melkonian M (2019) Optimising biomass and peridinin accumulation in the dinoflagellate Symbiodinium voratum using a twin-layer porous substrate bioreactor. J Appl Phycol 31:21–28. https://doi.org/10.1007/s10811-018-1513-3
Larkum AWD, Scaramuzzi C, Cox GC, Hiller RG, Turner AG (1994) Light-harvesting chlorophyll c-like pigment in Prochloron. Proc Natl Acad Sci 91:679–683. https://doi.org/10.1073/PNAS.91.2.679
Latasa M, Berdalet E (1994) Effect of nitrogen or phosphorus starvation on pigment composition of cultured Heterocapsa sp. J Plankton Res 16:83–94. https://doi.org/10.1093/PLANKT/16.1.83
Laws EA, McClellan SA, Passow U (2020) Interactive effects of CO2, temperature, irradiance, and nutrient limitation on the growth and physiology of the marine diatom Thalassiosira pseudonana (Coscinodiscophyceae). J Phycol 56:1614–1624. https://doi.org/10.1111/jpy.13048
Lehmuskero A, Skogen Chauton M, Boström T (2018) Light and photosynthetic microalgae: a review of cellular- and molecular-scale optical processes. Prog Oceanogr 168:43–56. https://doi.org/10.1016/j.pocean.2018.09.002
Li HY, Lu Y, Zheng JW, Yang WD, Liu JS (2014) Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Mar Drugs 12:153–166. https://doi.org/10.3390/MD12010153
Li T, Chen X, Lin S (2021) Physiological and transcriptomic responses to N-deficiency and ammonium: nitrate shift in Fugacium kawagutii (Symbiodiniaceae). Sci Total Environ 753:141906. https://doi.org/10.1016/j.scitotenv.2020.141906
Lim AS, Jeong HJ, You JH, Park SA (2020) Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production. Algae 35:277–292. https://doi.org/10.4490/algae.2020.35.9.2
López-Rodríguez M, Cerón-García MC, López-Rosales L, González-López CV, Molina-Miras A, Ramírez-González A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E (2019) Assessment of multi-step processes for an integral use of the biomass of the marine microalga Amphidinium carterae. Bioresour Technol 282:370–377. https://doi.org/10.1016/j.biortech.2019.03.041
López-Rodríguez M, Cerón-García MC, López-Rosales L, Navarro-López E, Sánchez-Mirón A, Molina-Miras A, Abreu AC, Fernández I, García-Camacho F (2020) Improved extraction of bioactive compounds from biomass of the marine dinoflagellate microalga Amphidinium carterae. Bioresour Technol 313:123518. https://doi.org/10.1016/j.biortech.2020.123518
Ma R, Thomas-Hall SR, Chua ET, Eltanahy E, Netzel ME, Netzel G, Lu Y, Schenk PM (2018) LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae. Bioresour Technol 252:118–126. https://doi.org/10.1016/j.biortech.2017.12.096
MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38. https://doi.org/10.1046/j.1529-8817.2002.00094.x
Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579. https://doi.org/10.4319/LO.2000.45.3.0569
Merendino N, Costantini L, Manzi L, Molinari R, D’Eliseo D, Velotti F (2013) Dietary ω-3 polyunsaturated fatty acid DHA: a potential adjuvant in the treatment of cancer. Biomed Res Int 2013:310186. https://doi.org/10.1155/2013/310186
Mies M, Chaves-Filho AB, Miyamoto S, Güth AZ, Tenório AA, Castro CB, Pires DO, Calderon EN, Sumida PYG (2017) Production of three symbiosis-related fatty acids by Symbiodinium types in clades A-F associated with marine invertebrate larvae. Coral Reefs 36:1319–1328. https://doi.org/10.1007/S00338-017-1627-0/TABLES/2
Molina-Miras A, López-Rosales L, Sánchez-Mirón A, Cerón-García MC, Seoane-Parra S, García-Camacho F, Molina-Grima E (2018) Long-term culture of the marine dinoflagellate microalga Amphidinium carterae in an indoor LED-lighted raceway photobioreactor: production of carotenoids and fatty acids. Bioresour Technol 265:257–267. https://doi.org/10.1016/j.biortech.2018.05.104
Molina-Miras A, López-Rosales L, Sánchez-Mirón A, López-Rodríguez M, Cerón-García MC, García-Camacho F, Molina-Grima E (2020) Influence of culture medium recycling on the growth of a marine dinoflagellate microalga and bioactives production in a raceway photobioreactor. Algal Res 47:101820. https://doi.org/10.1016/j.algal.2020.101820
Müller MN, Yogui GT, Gálvez AO, de Sales Gustavo, Jannuzzi L, de Souza Fidelis, Filho J, de Jesus Flores Montes M, de Mendes Castro Melo PA, Neumann-Leitão S, Zanardi-Lamardo E (2021) Cellular accumulation of crude oil compounds reduces the competitive fitness of the coral symbiont Symbiodinium glynnii. Environ Pollut 289:117938. https://doi.org/10.1016/J.ENVPOL.2021.117938
Nader C, Cella H, Lopes RG, Oliveira CYB, D’Alessandro EB, Filho NRA (2021) Derner RB (2022) Effect of different cultivation conditions on the production of volatile organic compounds by the microalgae Arthrospira platensis and Chlorella sp. J Appl Phycol 341(34):203–217. https://doi.org/10.1007/S10811-021-02641-7
Nomura T, Kikuchi M, Kubodera A, Kawakami Y (1997) Proton-donative antioxidant activity of fucoxanthin with 1,1-diphenyl-2-picrylhydrazyl (DPPH). IUBMB Life 42:361–370. https://doi.org/10.1080/15216549700202761
O’Fallon JV, Busboom JR, Nelson ML, Gaskins CT (2007) A direct method for fatty acid methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. J Anim Sci 85(6):1511–1521. https://doi.org/10.2527/jas.2006-491
Oliveira CYB, D’Alessandro EB, AntoniosiFilho NR, Lopes RG, Derner RB (2021) Synergistic effect of growth conditions and organic carbon sources for improving biomass production and biodiesel quality by the microalga Choricystis minor var minor. Sci Total Environ 759:143476. https://doi.org/10.1016/j.scitotenv.2020.143476
Oliveira CYB, Oliveira CDL, Müller MN, Santos EP, Dantas DMM, Gálvez AO (2020) A scientometric overview of global dinoflagellate research. Publications 8:50. https://doi.org/10.3390/publications8040050
Oliveira CYB, Oliveira CDL, Prasad R, Ong HC, Araujo ES, Shabnam N, Gálvez AO (2021b) A multidisciplinary review of Tetradesmus obliquus : a microalga suitable for large-scale biomass production and emerging environmental applications. Rev Aquac 13:1594–1618. https://doi.org/10.1111/raq.12536
Owens TG, Falkowski PG, Whitledge TE (1980) Diel periodicity in cellular chlorophyll content in marine diatoms. Mar Biol 59:71–77. https://doi.org/10.1007/BF00405456
Pérez-gálvez A, Viera I, Roca M (2020) Carotenoids and Chlorophylls as Antioxidants. Antioxidants 9:505. https://doi.org/10.3390/ANTIOX9060505
Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 8:103–130
Prazeres LDKT, Aragão TP, Brito SA, Almeida CLF, Silva AD, De Paula MMF, Farias JS, Vieira LD, Damasceno BPGL, Rolim LA, Veras BO, Rocha IG, Silva Neto JC, Bittencourt MLF, de Gonçalves RCR, Kitagawa RR, Wanderley AG (2019) Antioxidant and antiulcerogenic activity of the dry extract of pods of Libidibia ferrea Mart ex Tul (Fabaceae). Oxid Med Cell Longev 2019:1983137
Prézelin BB (1976) (1976) The role of peridinin-chlorophyll a-proteins in the photosynthetic light adaption of the marine dinoflagellate. Glenodinium Sp Planta 1303(130):225–233. https://doi.org/10.1007/BF00387826
Remmers IM, Martens DE, Wijffels RH, Lamers PP (2017) Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities. PLoS ONE 12:e0175630. https://doi.org/10.1371/JOURNAL.PONE.0175630
Schlüter L, Møhlenberg F, Havskum H, Larsen S (2000) The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Mar Ecol Prog Ser 192:49–63. https://doi.org/10.3354/MEPS192049
Shi X, Li L, Lin S (2018) Circadian and irradiance effects on expression of antenna protein genes and pigment contents in dinoflagellate Prorocentrum donghaiense (Dinophycae). Harmful Algae 75:27–34. https://doi.org/10.1016/J.HAL.2018.04.002
Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sustain Energy Rev 50:431–444. https://doi.org/10.1016/j.rser.2015.05.024
Song M, Pei H (2018) The growth and lipid accumulation of Scenedesmus quadricauda during batch mixotrophic/heterotrophic cultivation using xylose as a carbon source. Bioresour Technol 263:525–531. https://doi.org/10.1016/J.BIORTECH.2018.05.020
Strickland J, Parsons T (1972) A practical handbook of seawater analysis, 2nd. Fisheries research board of Canada, Ottawa
Supasri KM, Kumar M, Segečová A, McCauley JI, Herdean A, Padula MP, Omeara T, Ralph PJ (2021) Characterisation and bioactivity analysis of peridinin-chlorophyll a-protein (PCP) isolated from Symbiodiniumtridacnidorum CS-73. J Mar Sci Eng 9:1387. https://doi.org/10.3390/JMSE9121387/S1
Tang DYY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL (2020) Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol 304:122997. https://doi.org/10.1016/j.biortech.2020.122997
Teo CL, Atta M, Bukhari A, Taisir M, Yusuf AM, Idris A (2014) Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresour Technol 162:38–44. https://doi.org/10.1016/j.biortech.2014.03.113
Tilney CL, Shankar S, Hubbard KA, Corcoran AA (2019) Is Karenia brevis really a low-light-adapted species? Harmful Algae 90:101709. https://doi.org/10.1016/j.hal.2019.101709
Tsirigoti A, Tzovenis I, Koutsaviti A, Economou-Amilli A, Ioannou E, Melkonian M (2020) Biofilm cultivation of marine dinoflagellates under different temperatures and nitrogen regimes enhances DHA productivity. J Appl Phycol 32:865–880. https://doi.org/10.1007/s10811-019-02027-w
Tsunematsu Y, Ohno O, Konishi K, Yamada K, Suganuma M, Uemura D (2009) Symbiospirols: novel long carbon-chain compounds isolated from symbiotic marine dinoflagellate Symbiodinium sp. Org Lett 11:2153–2156. https://doi.org/10.1021/ol900299x
Wang H, Zhang B, Song X, Jian X, Tang C, Campbell DA, Lin Q, Li G (2019) High antioxidant capability interacts with respiration to mediate two Alexandrium species growth exploitation of photoperiods and light intensities. Harmful Algae 82:26–34. https://doi.org/10.1016/J.HAL.2018.12.008
Young AJ, Lowe GL (2018) Carotenoids—antioxidant properties. Antioxidants 7:28. https://doi.org/10.3390/ANTIOX7020028
Zahedi Dizaji S, Attaran Fariman G, Zahedi MM (2021) Pigment content analysis in two HAB forming dinoflagellate species during the growth period. J Appl Phycol 33:807–817. https://doi.org/10.1007/s10811-020-02331-w
Zárate R, el Jaber-Vazdekis N, Tejera N, Pérez JA, Rodríguez C (2017) Significance of long chain polyunsaturated fatty acids in human health. Clin Transl Med 61(6):1–19. https://doi.org/10.1186/S40169-017-0153-6
Zhou L, Wu S, Gu W, Wang L, Wang J, Gao S, Wang G (2021) Photosynthesis acclimation under severely fluctuating light conditions allows faster growth of diatoms compared with dinoflagellates. BMC Plant Biol 21:1–14. https://doi.org/10.1186/s12870-021-02902-0
Funding
This research was funded in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Finance Code 001. JLA received a researcher fixation grant (BFP-0186–5.06/20) from the Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE). RSB, MNM, and AOG received research fellowships PQ 307107/2019–1, PQ 305467/2020–4, and PQ 308063/2019–8, respectively, from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
Author information
Authors and Affiliations
Contributions
CYBO: conceptualization; investigation; methodology; data curation; formal analysis; writing—original draft. JLA: investigation, formal analysis. EPS: investigation, formal analysis. APM: resources; formal analysis; writing—review and editing. GT: resources, formal analysis. CDLO: data curation; formal analysis; writing—review and editing. BOV: data curation, formal analysis. RSB: resources, formal analysis. MNM: resources; supervision; writing—review and editing. AOG: resources; supervision; project administration; writing—review and editing.
Corresponding author
Ethics declarations
Ethics approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Oliveira, C.Y.B., Abreu, J.L., Santos, E.P. et al. Light induces peridinin and docosahexaenoic acid accumulation in the dinoflagellate Durusdinium glynnii. Appl Microbiol Biotechnol 106, 6263–6276 (2022). https://doi.org/10.1007/s00253-022-12131-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-022-12131-6


