Skip to main content
Log in

Characterization of inulolytic enzymes from the Jerusalem artichoke–derived Glutamicibacter mishrai NJAU-1

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The rhizosphere context of inulin-accumulating plants, such as Jerusalem artichoke (Helianthus tuberosus), is an ideal starting basis for the discovery of inulolytic enzymes with potential for bio fructose production. We isolated a Glutamicibacter mishrai NJAU-1 strain from this context, showing exo-inulinase activity, releasing fructose from fructans. The growth conditions (pH 9.0; 15 °C) were adjusted, and the production of inulinase by Glutamicibacter mishrai NJAU-1 increased by 90% (0.32 U/mL). Intriguingly, both levan and inulin, but not fructose and sucrose, induced the production of exo-inulinase activity. Two exo-inulinase genes (inu1 and inu2) were cloned and heterologously expressed in Pichia pastoris. While INU2 preferentially hydrolyzed longer inulins, the smallest fructan 1-kestose appeared as the preferred substrate for INU1, also efficiently degrading nystose and sucrose. Active site docking studies with GFn- and Fn-type small inulins (G is glucose, F is fructose, and n is the number of β (2–1) bound fructose moieties) revealed subtle substrate differences between INU1 and INU2. A possible explanation about substrate specificity and INU’s protein structure is then suggested.

Key points

A Glutamicibacter mishrai strain harbored exo-inulinase activity.

Fructans induced the inulolytic activity in G. mishrai while the inulolytic activity was optimized at pH 9.0 and 15 °C.

Two exo-inulinases with differential substrate specificity were characterized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All relevant data are within the manuscript.

Code availability

Not applicable.

References

  • Allais JJ, Kammoun S, Blanc F, Girard C, Baratti JC (1986) Isolation and characterization of bacterial strains with inulinase activity. Appl Environ Microbiol 52(5):1086–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao M, Niu CT, Xu X, Zheng FY, Liu CF, Wang JJ, Li Q (2019) Identification, soluble expression, and characterization of a novel endo-inulinase from Lipomyces starkeyi NRRL Y-11557. Int J Biol Macromol 137:537–544

    Article  CAS  PubMed  Google Scholar 

  • Beluche I, Guiraud JP, Galzy P (1980) Inulinase Activity of Debaromyces cantarellii. Folia Microblol 25:32–39

    Article  CAS  Google Scholar 

  • Busse HJ (2016) Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 66(1):9–37

    Article  CAS  PubMed  Google Scholar 

  • Coker JA, Sheridan PP, Loveland-Curtze J, Gutshall KR, Auman AJ, Brenchley JE (2003) Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an antarctic Arthrobacter isolate. J Bacteriol 185(18):5473–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elyachioui M, Hornez JP, Tailliez R (1992) General properties of extracellular bacterial inulinase. J Appl Microbiol 73(6):514–519

    CAS  Google Scholar 

  • Gao J, Xu YY, Yang HM, Xu H, Xue F, Li S, Feng XH (2014) Gene cloning, expression, and characterization of an exo-inulinase from Paenibacillus polymyxa ZJ-9. Appl Biochem Biotechnol 173(6):1419–1430

    Article  CAS  PubMed  Google Scholar 

  • Gill PK, Sharma AD, Harchand RK, Singh P (2003) Effect of media supplements and culture conditions on inulinase production by an actinomycete strain. Bioresour Technol 87(2003):359–362

    Article  CAS  PubMed  Google Scholar 

  • Gill PK, Manhas RK, Singh P (2006) Purification and properties of a heat-stable exoinulinase isoform from Aspergillus fumigatus. Bioresour Technol 97(7):894–902

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Wyss M, Duran Aguero S, Angarita Davila L (2018) D-tagatose is a promising sweetener to control glycaemia: a new functional food. Biomed Res Int 2018:8718053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helsley RN, Moreau F, Gupta MK, Radulescu A, DeBosch B, Softic S (2020) Tissue-specific fructose metabolism in obesity and diabetes. Curr Diab Rep 20(11):64

    Article  CAS  PubMed  Google Scholar 

  • Jeza S, Maseko SB, Lin J (2018) Purification and characterization of exo-inulinase from Paenibacillus sp. d9 strain. Protein J 37(1):70–81

    Article  CAS  PubMed  Google Scholar 

  • Jiao J, Wang J, Zhou MJ, Ren XY, Zhan WY, Sun ZJ, Zhao HY, Yang Y, Liang MX, Van den Ende W (2018) Characterization of fructan metabolism during Jerusalem artichoke (Helianthus tuberosus L.) germination. Front Plant Sci 9:1384

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  • Kango N, Jain SC (2011) Production and properties of microbial inulinases: recent advances. Food Biotechnol 25(3):165–212

    Article  CAS  Google Scholar 

  • Kim KY, Koo BS, Jo D, Kim SI (2004) Cloning, expression, and purification of exoinulinase from Bacillus sp. snu-7. J Microbiol Biotechn 14(2):344–349

    CAS  Google Scholar 

  • Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley L, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29(4):622–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon YW, Kim HY, Choi YJ (2000) Cloning and characterization of Pseudomonas mucidolens exoinulinase. J Microbiol Biotechn 10(2):238–243

    CAS  Google Scholar 

  • Kwon HJ, Jeon SJ, You DJ, Kim KH, Jeong YK, Kim YH, Kim YM, Kim BW (2003) Cloning and characterization of an exoinulinase from Bacillus polymyxa. Biotechnol Lett 25(2):155–159

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Hong SH, Kim KR, Oh DK (2017) High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction. Biotechnol Lett 39(8):1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Li XF, Hou SL, Su M, Yang MF, Shen SH, Jiang GM, Qi DM, Chen SY, Liu GS (2010) Major energy plants and their potential for bioenergy development in China. Environ Manage 46(4):579–589

    Article  PubMed  Google Scholar 

  • Long XH, Shao HB, Liu L, Liu LP, Liu ZP (2016) Jerusalem artichoke: a sustainable biomass feedstock for biorefinery. Renew Sust Energ Rev 54:1382–1388

    Article  CAS  Google Scholar 

  • Lu WD, Li AX, Guo QL (2014) Production of novel alkalitolerant and thermostable inulinase from marine actinomycete Nocardiopsis sp. DN-K15 and inulin hydrolysis by the enzyme. Ann Microbiol 64(2):441–449

    Article  CAS  Google Scholar 

  • Ma JY, Cao HL, Tan HD, Hu XJ, Liu WJ, Du YG, Yin H (2016) Cloning, expression, characterization, and mutagenesis of a thermostable exoinulinase from Kluyveromyces cicerisporus. Appl Biochem Biotechnol 178(1):144–158

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Moriyama S, Akimoto H, Suetsugu N, Kawasaki S, Nakamura T, Ohta K (2002) Purification and properties of an extracellular exoinulinase from Penicillium sp strain TN-88 and sequence analysis of the encoding gene. Biosci Biotechnol Biochem 66(9):1887–1896

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Gutierrez I, Rodriguez-Alegria ME, Munguia AL (2009) Kinetic behaviour and specificity of beta-fructosidases in the hydrolysis of plant and microbial fructans. Process Biochem 44(8):891–898

    Article  CAS  Google Scholar 

  • Qiu YB, Lei P, Zhang YT, Sha YY, Zhan YJ, Xu ZQ, Li S, Xu H, Ouyang PK (2018) Recent advances in bio-based multi-products of agricultural Jerusalem artichoke resources. Biotechnol Biofuels 11:151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu YB, Zhu YF, Zhan YJ, Zhang YT, Sha YY, Zhan YJ, Xu ZQ, Li S, Feng XH, Xu H (2019) Systematic unravelling of the inulin hydrolase from Bacillus amyloliquefaciens for efficient conversion of inulin to poly-(γ-glutamic acid). Biotechnol Biofuels 12:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Radoman B, Grunwald-Gruber C, Schmelzer B, Zavec D, Gasser B, Altmann F, Mattanovich D (2021) The degree and length of o-glycosylation of recombinant proteins produced in Pichia pastoris depends on the nature of the protein and the process type. Biotechnol J 16(3):e2000266

    Article  PubMed  CAS  Google Scholar 

  • Rawat HK, Jain SC, Kango N (2015) Production and properties of inulinase from Penicillium sp. NFCC 2768 grown on inulin-rich vegetal infusions. Biocatal Biotransfor 33(1):61–68

    Article  CAS  Google Scholar 

  • Rawat HK, Soni H, Treichel H, Kango N (2017) Biotechnological potential of microbial inulinases: recent perspective. Crit Rev Food Sci Nutr 57(18):3818–3829

    Article  CAS  PubMed  Google Scholar 

  • Resina D, Serrano A, Valero F, Ferrer P (2004) Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter. J Biotechnol 109(1–2):103–113

    Article  CAS  PubMed  Google Scholar 

  • Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Leotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104:S1–S63

    Article  CAS  PubMed  Google Scholar 

  • Shao TY, Gu XY, Zhu TS, Pan XT, Zhu Y, Long XH, Shao HB, Liu MQ, Rengel Z (2019) Industrial crop Jerusalem artichoke restored coastal saline soil quality by reducing salt and increasing diversity of bacterial community. Appl Soil Ecol 138:195–206

    Article  Google Scholar 

  • Shen JD, Zhang R, Li JJ, Tang XH, Li RX, Wang M, Huang ZX, Zhou JP (2015) Characterization of an exo-inulinase from Arthrobacter: a novel NaCl-tolerant exo-inulinase with high molecular mass. Bioengineered 6(2):99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng J, Chi ZM, Gong F, Li J (2008) Purification and characterization of extracellular inulinase from a marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the purified inulinase. Appl Biochem Biotechnol 144(2):111–121

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Bhermi HK (2008) Production of extracellular exoinulinase from Kluyveromyces marxianus YS-1 using root tubers of Asparagus officinalis. Bioresour Technol 99(15):7418–7423

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Sooch BS, Puri M (2007) Optimization of medium and process parameters for the production of inulinase from a newly isolated Kluyveromyces marxianus YS-1. Bioresour Technol 98(13):2518–2525

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Chauhan K, Kennedy JF (2017) A panorama of bacterial inulinases: production, purification, characterization and industrial applications. Int J Biol Macromol 96:312–322

    Article  CAS  PubMed  Google Scholar 

  • Van Laere A, Van den Ende W (2002) Inulin metabolism in dicots: Chicory as a model system. Plant Cell Environ 25(6):803–813

    Article  Google Scholar 

  • Vandamme EJ, Derycke DG (1983) Microbial inulinases: fermentation process, properties, and applications. Adv Appl Microbiol 29:139–176

    Article  CAS  PubMed  Google Scholar 

  • Versluys M, Porras-Domínguez JR, De Coninck T, Van Damme EJM, Van den Ende W (2022) A novel chicory fructanase can degrade common microbial fructan product profiles and displays positive cooperativity. J Exp Bot 73(5):1602–1622

    Article  PubMed  Google Scholar 

  • Vijayaraghavan K, Yamini D, Ambika V, Sravya Sowdamini N (2009) Trends in inulinase production-a review. Crit Rev Biotechnol 29(1):67–77

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Huang Y, Long X, Meng X, Liu Z (2011) Cloning of exoinulinase gene from Penicillium janthinellum strain B01 and its high-level expression in Pichia pastoris. J Appl Microbiol 111(6):1371–1380

    Article  CAS  PubMed  Google Scholar 

  • Wanker E, Huber A, Schwab H (1995) Purification and characterization of the Bacillus subtilis levanase produced in Escherichia coli. Appl Environ Microbiol 61(5):1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao R, Tanida M, Takao S (1989) Purification and characteristics of two exoinulinases from Chrysosporium pannorum. J Ferment Bioeng 67(5):331–334

    Article  CAS  Google Scholar 

  • Xu HH, Liang MX, Xu L, Li H, Zhang X, Kang J, Zhao QX, Zhao HY (2015) Cloning and functional characterization of two abiotic stress-responsive Jerusalem artichoke (Helianthus tuberosus) fructan 1-exohydrolases (1-FEHs). Plant Mol Biol 87(1–2):81–98

    Article  CAS  PubMed  Google Scholar 

  • Yousefi-Mokri M, Sharafi A, Rezaei S, Sadeghian-Abadi S, Imanparast S, Mogharabi-Manzari M, Amanzadeh Y, Faramarzi MA (2019) Enzymatic hydrolysis of inulin by an immobilized extremophilic inulinase from the halophile bacterium Alkalibacillus filiformis. Carbohydr Res 483:107746

    Article  CAS  PubMed  Google Scholar 

  • Zherebtsov NA, Shelamova SA, Abramova IN (2002) Biosynthesis of inulinases by Bacillus bacteria. Appl Biochem Biotechnol 38(6):634–638

    CAS  Google Scholar 

  • Zhou JP, Lu Q, Peng MZ, Zhang R, Mo MH, Tang XH, Li JJ, Xu B, Ding JM, Huang ZX (2015) Cold-active and NaCl-tolerant exo-inulinase from a cold-adapted Arthrobacter sp MN8 and its potential for use in the production of fructose at low temperatures. J Biosci Bioeng 119(3):267–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Plant editors for valuable comments regarding the manuscript text. This research was supported by grants from the National Key Research and Development Program of China (2020YFD0900704), the Guidance Foundation from the Sanya Institute of Nanjing Agricultural University (NAUSY-MS16), Foreign Experts Project (X202006), Six Talent Peaks Project in Jiangsu Province (SWYY-058), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD program, 809001). The authors acknowledge Arnout Voet (Laboratory of Biomolecular Modelling and Design, KU Leuven, Belgium) for providing access to GOLD and MOE software. The authors acknowledge FWO Vlaanderen for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Liang MX: conceptualization, supervision and project administration. Lian D, Zhuang S, Shui C, Zheng SC: investigation. Lian D: methodology and writing—original draft preparation. Ma YH, Sun ZJ, Toksoy Öner E, Van den Ende W: resources, writing—reviewing and editing. Jaime R. Porras-Domínguez: modeling and docking.

Corresponding author

Correspondence to Mingxiang Liang.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, D., Zhuang, S., Shui, C. et al. Characterization of inulolytic enzymes from the Jerusalem artichoke–derived Glutamicibacter mishrai NJAU-1. Appl Microbiol Biotechnol 106, 5525–5538 (2022). https://doi.org/10.1007/s00253-022-12088-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-022-12088-6

Keywords