Skip to main content

Advertisement

Log in

Preparation and identification of monoclonal antibodies against porcine CD103

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs) play an important role in activating, regulating, and maintaining the immune response. CD103+ DCs, one of the DC subpopulations, mainly function in the mucosal immune response. They are responsible for capturing and carrying antigens to the relevant lymph nodes to activate the downstream immune responses. However, there is limited available information regarding the function of CD103+ DCs in the porcine mucosal immune response. In this study, two monoclonal antibodies (mAbs) against porcine CD103 were prepared, and their applications were evaluated by enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and flow cytometry. The produced mAbs (7F3 and 9H3) were both IgG1 subtype with κ chains in the light chain. The 7F3 recognizes a linear epitope (PDLRPRAQVYFSDLE) while 9H3 recognizes another linear epitope (QILDEGQVLLGAVGA). The prepared mAbs could be used in vivo to detect the cells expressing CD103 molecules, giving wide applications of both mAbs. In conclusion, this study successfully prepared 2 mAbs against CD103 protein, and they showed applicability in vivo experiments, which will provide the basis for the study of porcine mucosal immunity.

Key points

• Preparation of monoclonal antibodies against porcine CD103 molecule

• Analysis of the distribution of CD103 protein on different cells is possible

• Exploration of the CD103+ DCs function in porcine mucosal immunity is possible

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balan S, Saxena M, Bhardwaj N (2019) Dendritic cell subsets and locations. Int Rev Cell Mol Biol 348:1–68

    Article  CAS  Google Scholar 

  • Bourdely P, Anselmi G, Vaivode K, Ramos RN, Missolo-Koussou Y, Hidalgo S, Tosselo J, Nuñez N, Richer W, Vincent-Salomon A (2020) Transcriptional and functional analysis of CD1c+ human dendritic cells identifies a CD163+ subset priming CD8+ CD103+ T cells. Immunity 53(2):335–352. e8

  • Chai D, Zhang Z, Jiang N, Ding J, Qiu D, Shi SY, Wang G, Fang L, Li H, Tian H (2021) Co-immunization with L-Myc enhances CD8+ or CD103+ DCs mediated tumor-specific multi-functional CD8+ T cell responses. Cancer Sci 112(9):3469

    Article  CAS  Google Scholar 

  • Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV, Hall J, Sun C-M, Belkaid Y, Powrie F (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β–and retinoic acid–dependent mechanism. J Exp Med 204(8):1757–1764

    Article  CAS  Google Scholar 

  • del Rio M-L, Rodriguez-Barbosa J-I, Kremmer E, Förster R (2007) CD103− and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T cells. J Immunol 178(11):6861–6866

    Article  Google Scholar 

  • Del Rio ML, Bernhardt G, Rodriguez-Barbosa JI, Förster R (2010) Development and functional specialization of CD103+ dendritic cells. Immunol Rev 234(1):268–281

    Article  Google Scholar 

  • Elderman M, van Beek A, Brandsma E, de Haan B, Savelkoul H, de Vos P, Faas M (2016) Sex impacts Th1 cells, Tregs, and DCs in both intestinal and systemic immunity in a mouse strain and location-dependent manner. Biol Sex Differ 7(1):1–15

    Article  Google Scholar 

  • Flores-Langarica A, Luda KM, Persson E, Cook C, Bobat S, Marshall J, Dahlgren M, Hägerbrand K, Toellner K, Goodall M (2018) CD103+ CD11b+ mucosal classical dendritic cells initiate long-term switched antibody responses to flagellin. Mucosal Immunol 11(3):681–692

    Article  CAS  Google Scholar 

  • Fulcher ML, Gabriel S, Burns KA, Yankaskas JR, Randell SH (2005) Well-differentiated human airway epithelial cell cultures Human cell culture protocols. Springer, pp 183–206

  • Hao S, Han X, Wang D, Yang Y, Li Q, Li X, Qiu CH (2016) Critical role of CCL 22/CCR 4 axis in the maintenance of immune homeostasis during apoptotic cell clearance by splenic CD 8α+ CD 103+ dendritic cells. Immunology 148(2):174–186

    Article  CAS  Google Scholar 

  • Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, Berg P-L, Davidsson T, Powrie F, Johansson-Lindbom B (2008) Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med 205(9):2139–2149

    Article  CAS  Google Scholar 

  • Jin J, Jung I-H, Moon SH, Jeon S, Jeong S-J, Sonn S-K, Seo S, Lee M-N, Song EJ, Kweon HY (2020) CD137 signaling regulates acute colitis via RALDH2-expressing CD11b− CD103+ DCs. Cell reports 30(12):4124–4136. e5

  • Johansson-Lindbom B, Svensson M, Pabst O, Palmqvist C, Marquez G, Förster R, Agace WW (2005) Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med 202(8):1063–1073

    Article  CAS  Google Scholar 

  • Kim SV, Xiang WV, Kwak C, Yang Y, Lin XW, Ota M, Sarpel U, Rifkin DB, Xu R, Littman DR (2013) GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340(6139):1456–1459

    Article  CAS  Google Scholar 

  • Kim TS, Braciale TJ (2009) Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. PLoS ONE 4(1):e4204

    Article  Google Scholar 

  • McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, Newberry RD, Miller MJ (2012) Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483(7389):345–349

    Article  CAS  Google Scholar 

  • Nakano H, Free M, Whitehead G, Maruoka S, Wilson R, Nakano K, Cook D (2012) Pulmonary CD103+ dendritic cells prime Th2 responses to inhaled allergens. Mucosal Immunol 5(1):53–65

    Article  CAS  Google Scholar 

  • Peron G, Oliveira J, Fernandes FF, Verinaud L (2021) Lung CD103+ endritic cells of mice infected with Paracoccidioides brasiliensis contribute to Treg differentiation. Microb Pathog 150:104696

    Article  CAS  Google Scholar 

  • Roe MM, Hashimi M, Swain S, Woo KM, Bimczok D (2020) p38 MAPK signaling mediates retinoic acid-induced CD103 expression in human dendritic cells. Immunology 161(3):230–244

    Article  CAS  Google Scholar 

  • Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J (2015) T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 33:169–200

    Article  CAS  Google Scholar 

  • Ruane D, Brane L, Reis BS, Cheong C, Poles J, Do Y, Zhu H, Velinzon K, Choi J-H, Studt N (2013) Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract. J Exp Med 210(9):1871–1888

    Article  CAS  Google Scholar 

  • Ruane D, Chorny A, Lee H, Faith J, Pandey G, Shan M, Simchoni N, Rahman A, Garg A, Weinstein EG (2016) Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses. J Exp Med 213(1):53–73

    Article  CAS  Google Scholar 

  • Ruckwardt TJ, Morabito KM, Bar-Haim E, Nair D, Graham BS (2018) Neonatal mice possess two phenotypically and functionally distinct lung-migratory CD103+ dendritic cell populations following respiratory infection. Mucosal Immunol 11(1):186–198

    Article  CAS  Google Scholar 

  • Satitsuksanoa P, Jansen K, Głobińska A, van de Veen W, Akdis M (2018) Regulatory immune mechanisms in tolerance to food allergy. Front Immunol 9:2939

    Article  CAS  Google Scholar 

  • Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8(5):1–9

    Article  Google Scholar 

  • Takaki H, Kure S, Oshiumi H, Sakoda Y, Suzuki T, Ainai A, Hasegawa H, Matsumoto M, Seya T (2018) Toll-like receptor 3 in nasal CD103+ dendritic cells is involved in immunoglobulin A production. Mucosal Immunol 11(1):82–96

    Article  CAS  Google Scholar 

  • Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, Narushima S, Vlamakis H, Motoo I, Sugita K (2019) A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565(7741):600–605

    Article  CAS  Google Scholar 

  • Vremec D, Zorbas M, Scollay R, Saunders D, Ardavin C, Wu L, Shortman K (1992) The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J Exp Med 176(1):47–58

    Article  CAS  Google Scholar 

  • Weiner HL, da Cunha AP, Quintana F, Wu H (2011) Oral tolerance. Immunol Rev 241(1):241–259

    Article  CAS  Google Scholar 

  • Wu T-C, Xu K, Banchereau R, Marches F, Chun IY, Martinek J, Anguiano E, Pedroza-Gonzalez A, Snipes GJ, O’Shaughnessy J (2014) Reprogramming tumor-infiltrating dendritic cells for CD103+ CD8+ mucosal T-cell differentiation and breast cancer rejection. Cancer Immunol Res 2(5):487–500

    Article  CAS  Google Scholar 

  • Zhao H, Yang J, Qian Q, Wu M, Li M, Xu W (2018) Mesenteric CD103+ DCs initiate switched coxsackievirus B3 VP1-specific IgA response to intranasal chitosan-DNA vaccine through secreting BAFF/IL-6 and promoting Th17/Tfh differentiation. Front Immunol 9:2986

    Article  CAS  Google Scholar 

  • Zhou C-z, Wang R-f, Cheng D-l, Zhu Y-j, Cao Q, Lv W-f (2019) FLT3/FLT3L-mediated CD103+ dendritic cells alleviates hepatic ischemia-reperfusion injury in mice via activation of treg cells. Biomed Pharmacother 118:109031

    Article  CAS  Google Scholar 

  • Zhou Y, Slone N, Chrisikos TT, Kyrysyuk O, Babcock RL, Medik YB, Li HS, Kleinerman ES, Watowich SS (2020) Vaccine efficacy against primary and metastatic cancer with in vitro-generated CD103+ conventional dendritic cells. Journal for immunotherapy of cancer 8(1)

  • Zhang T, Fu Y, Li B, Wang J, Liu G (2021) Expression of and polyclonal antiserum preparation for the porcine surface molecule CD103 protein of the dendritic cell. Animal Husbandry & Veterinary Medicine 53(12):85–91 ((In chinese))

    Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (31972689) and Natural Science Foundation of Science and Technology Department of Gansu Province, China (20JR10RA020).

Author information

Authors and Affiliations

Authors

Contributions

YF and GL conceived the experiment. TZ, HY, YF, MA, JY, ML, SL, NZ, HS, and BL performed the experiment. TZ, HY, YF, and MA wrote the manuscript draft. GL edited the manuscript.

Corresponding author

Correspondence to Yuguang Fu.

Ethics declarations

Ethics approval

All the mouse experimental procedures were approved by the Lanzhou Veterinary Research Institute experimental animal committee. All applicable international, national, and institutional guidelines for the care and use of animal were strictly followed.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 401 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Yu, H., Aryal, M. et al. Preparation and identification of monoclonal antibodies against porcine CD103. Appl Microbiol Biotechnol 106, 4005–4015 (2022). https://doi.org/10.1007/s00253-022-11950-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-022-11950-x

Keywords

Navigation