Skip to main content
Log in

Agri-biotechnology of coriander (Coriandrum sativum L.): an inclusive appraisal

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 12 March 2022

This article has been updated

Abstract

Bountiful expression of bioactivity of phytochemicals obtained from spice crops like coriander gifts them the label of being natural antioxidants. It is well-accepted and time-tested towards contributing to human wellbeing. The accomplishment of coriander production is fundamentally influenced by genetic, agroclimatic, and agronomic factors. Despite the fact that there are very restricted options to manage the first two factors, the third one is apparently imperative to arbitrate as far as the elevated yield and enhanced quality are concerned. On the other hand, an indomitable, object-oriented, controlled agrotechnological and biotechnological intervention can also contribute towards better yield and quality of coriander. There are several accounts of the successful use of such technologies in order to genetically improve the qualitative and quantitative indicators of coriander. However, often these areas are not comprehensively explored and utilized. In that context, the present review highlights the botanical features, origin and distribution, multi-dimensional importance, pre- and post-harvest crop management, phytochemical production, and germplasm conservation, including the in vitro–based regeneration methods along with molecular marker-based biotechnological and omics approaches attempted in coriander until date. In addition, the possibility of the yet-to-be-explored agri-biotechnological methods and their potential for genetic improvement of this crop has also been reviewed in this appraisal.

Key points

• Coriander, used both as an herb and spice, is popular in the pharmaceutical and culinary industries.

• The current review provides insight into agrotechnological and biotechnological interventions for better yield and quality.

• Provides novel ideas to harness the comprehensive qualitative and quantitative genetic improvement based on the potential use of promising biotechnological tools and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Source: unpublished photograph of S. Gantait)

Fig. 2

Source: unpublished photographs of A. B. Sharangi)

Fig. 3

source: PubChem https://pubchem.ncbi.nlm.nih.gov) (Source: unpublished photograph of S. Gantait)

Fig. 4

source: PubChem https://pubchem.ncbi.nlm.nih.gov) (Source: unpublished photograph of S. Gantait)

Fig. 5

Source: unpublished photograph of S. Gantait)

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Change history

References

  • Abbassi A, Mahmoudi H, Zaouali W, M’Rabet Y, Casabianca H, Hosni K (2018) Enzyme-aided release of bioactive compounds from coriander (Coriandrum sativum L.) seeds and their residue by-products and evaluation of their antioxidant activity. J Food Sci Technol 55:3065–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams M, Schneider SV, Kluge M, Kessler M, Hamburger M (2012) Epilepsy in the Renaissance: a survey of remedies from 16th and 17th century German herbals. J Ethnopharmacol 143:1–13

    Article  PubMed  Google Scholar 

  • Alam MK, Choudhury N, Chowdhury NA, Youssouf QM (1992) Decontamination of spices by gamma radiation. Lett Appl Microbiol 14:199–202

    Article  Google Scholar 

  • Alefeld F (1886) Landwirthschaftliche Flora. [Agricultural flora]. Wiegandt and Hempel, Berlin (In German). Reprint 2014, Publisher Nabu Press, ISBN 13:9781293697160, p. 165

  • Ali M, Mujib A, Tonk D, Zafar N (2017) Plant regeneration through somatic embryogenesis and genome size analysis of Coriandrum sativum L. Protoplasma 254:343–352

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Mujib A, Zafar N, Tonk D (2018a) Protoplast isolation and plant regeneration in two cultivated coriander varieties, Co-1 and RS. Biotechnologia 99:345–355

    Article  CAS  Google Scholar 

  • Ali M, Mujib A, Zafar N, Tonk D (2018b) Somatic embryogenesis, biochemical alterations and synthetic seed development in two varieties of coriander (Coriandrum sativum L.). Adv Hortic Sci 32:239–248

    Google Scholar 

  • Anonymous (2001) Twenty fifth Annual Report, AICRP, SKN Collage of Agriculture, Jobner, Rajasthan, India.

  • Baboo R, Rana NS (1995) Effect of cutting management, nitrogen and phosphorus on growth and yield of coriander (Coriandrum sativum L.). Indian J Agron 40:253–255

    Google Scholar 

  • Banerjee J, Das A, Vahedi M, Gantait S (2019) Advances in functional genomics in investigating salinity tolerance in plants. In: Wani SH (ed) Recent Approaches in Omics for Plant Resilience to Climate Change. Springer Nature, Switzerland, pp 171–188

    Chapter  Google Scholar 

  • Barros L, Duenas M, Dias MI, Sousa MJ, Santos-Buelga C, Ferreira IC (2012) Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chem 132:841–848

    Article  CAS  Google Scholar 

  • Bettoni JC, Bonnart R, Shepherd AN, Kretzschmar AA, Volk GM (2019) Modifications to a Vitis shoot tip cryopreservation procedure: effect of shoot tip size and use of cryoplates. CryoLetters 40:103–112

    PubMed  Google Scholar 

  • Bhati DS (1988) Effect of leaf plucking on growth, yield and economics of coriander varieties under semiarid conditions. Indian J Agron 33:242–244

    Google Scholar 

  • Bhuiyan MNI, Begum J, Sultana M (2009) Chemical composition of leaf and seed essential oil of Coriandrum sativum L. from Bangladesh. Bangladesh J Pharmacxol 4:150–153

    Google Scholar 

  • Carrubba A, Torre R, Saiano F, Alonzo G (2006) Effect of sowing time on coriander performance in a semiarid Mediterranean environment. Crop Sci 46:437–447

    Article  Google Scholar 

  • Chaudhary OP, Singh J (2007) Diversity, temporal abundance, foraging behaviour of floral visitors and effect of different modes of pollination on coriander (Coriandrum sativum L.). J Spices and Arom Crop 16:8–14

    Google Scholar 

  • Chen RR, Zhang JT, Li BP, Guo SS, Hao JP, Zhou XM (1995) Somatic embryogenesis and artificial seed in coriander (Coriandrum sativum L.). In: Somatic Embryogenesis and Synthetic Seed II. Springer Berlin Heidelberg pp. 334–342

  • Choudhary S, Naika MB, Meena RD (2020) Identification and expression analysis of candidate genes associated with stem gall disease in Coriander (Coriandrum sativum L.) cultivars. Mol Biol Rep 47:5403–5409

    Article  CAS  PubMed  Google Scholar 

  • Choudhary S, Naika MBN, Sharma R, Meena RD, Singh R, Lal G (2019a) Transcriptome profiling of coriander: a dual purpose crop unravels stem gall resistance genes. J Genet 98:1–11

    Article  CAS  Google Scholar 

  • Choudhary S, Sharma R, Jethra G, Vishal MK, Tripathi A (2019b) Molecular diversity in coriander (Coriandrum sativum) using RAPD and ISSR markers. Indian J Agric Sci 89:193–198

    CAS  Google Scholar 

  • Chung IM, Ahmad A, Kim EH, Kim SH, Jung WS, Kim JH, Nayeem A, Nagella P (2012) Immunotoxicity activity from the essential oils of coriander (Coriandrum sativum) seeds. Immunopharmacol Immunotoxicol 34:499–503

    Article  CAS  PubMed  Google Scholar 

  • Ciocarlan N, Zarbock-Udrea S (2015) Contributions to the studies on the essential oils isolated from Coriandrum sativum L. and Foeniculum vulgare Mill. J Acad Sci Moldova Life Sci 2:55–60

    Google Scholar 

  • Coskuner Y, Karababa E (2007) Physical properties of coriander seeds (Coriandrum sativum L.). J Food Eng 80:408–416

    Article  Google Scholar 

  • Das A, Sarkar S, Bhattacharyya S, Gantait S (2020) Biotechnological advancements in Catharanthus roseus (L.) G. Don Appl Microbiol Biotechnol 104:4811–4835

    Article  CAS  PubMed  Google Scholar 

  • Debbarma R, Diengngan S, Kambale R (2019) Utilization of biotechnological approaches for germplasm conservation and sustainable use of underutilized fruit species in India. Acta Hortic 1241:159–164

    Article  Google Scholar 

  • Dias MI, Cardoso S, Martins A, Sousa MJ (2010) In Vitro Culture of Coriandrum sativum L. In: XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): a new look at medicinal and aromatic plants Seminar 925:271–274

  • Diederichsen A, Banniza S, Armstrong-Cho C, Sander T (2020) Coriandrum sativum L. – Coriander. In: Novak J, Blüthner WD (eds) Medicinal, aromatic and stimulant plants. handbook of plant breeding, vol 12. Springer, Cham, pp. 265—281

  • Divya P, Puthusseri B, Savanur MA, Lokesh V, Neelwarne B (2018) Effects of methyl jasmonate and carotenogenic inhibitors on gene expression and carotenoid accumulation in coriander (Coriandrum sativum L.) foliage. Food Res Int 111:11–19

    Article  CAS  PubMed  Google Scholar 

  • Engelmann F (2012) Germplasm collection, storage, and conservation. In: Plant Biotechnology and Agriculture. Academic Press 255–267

  • Evergetis E, Haroutounian SA (2014) Exploitation of apiaceae family plants as valuable renewable source of essential oils containing crops for the production of fine chemicals. Ind Crop Prod 54:70–77

    Article  CAS  Google Scholar 

  • Galata M, Sarker LS, Mahmoud SS (2014) Transcriptome profiling, and cloning and characterization of the main monoterpene synthases of Coriandrum sativum L. Phytochem 102:64–73

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gantait S, Sinniah UR, Suranthran P, Palanyandy SR, Subramaniam S (2015) Improved cryopreservation of oil palm (Elaeis guineensis Jacq.) polyembryoids using droplet vitrification approach and assessment of genetic fidelity. Protoplasma 252:89–101

  • Gantait S, El-Dawayati MM, Panigrahi J, Labrooy C, Verma SK (2018) The retrospect and prospect of the applications of biotechnology in Phoenix dactylifera L. Appl Microbiol Biotechnol 102:8229–8259

    Article  CAS  PubMed  Google Scholar 

  • Gantait S, Kundu S (2017) In vitro biotechnological approaches on Vanilla planifolia Andrews: advancements and opportunities. Acta Physiol Plant 39:196

    Article  Google Scholar 

  • Gantait S, Mahanta M (2021) Picloram-induced enhanced callus-mediated regeneration, acclimatization, and genetic clonality assessment of gerbera. J Genet Eng Biotechnol 19:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Gantait S, Mitra M (2021) Role of meta-topolin on in vitro shoot regeneration: an insight. In: Ahmad N, Strnad M (eds) Meta-topolin: a growth regulator for plant biotechnology and agriculture. Springer Nature, Singapore, pp 143–168

    Chapter  Google Scholar 

  • Gantait S, Sinniah UR, Shukla G, Sahu NC (2017) Cryoconservation methods for extended storage of plant genetic resources. In: Ansari AA, Gill SS, Abbas ZK, Naeem M (eds) Plant Biodiversity: Monitoring, Assessment and Conservation. CAB International, United Kingdom, pp 454–468

    Google Scholar 

  • Gastón MS, Cid MP, Vázquez AM, Decarlini MF, Demmel GI, Rossi LI, Salvatierra NA (2016) Sedative effect of central administration of Coriandrum sativum essential oil and its major component linalool in neonatal chicks. Pharm Biol 54:1954–1961

    Article  PubMed  Google Scholar 

  • Gholizadeh A, Dehghani H, Khodadadi M, Gulick PJ (2018) Genetic combining ability of coriander genotypes for agronomic and phytochemical traits in response to contrasting irrigation regimes. PLoS One 13(6):e0199630

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths DW, Robertson GW, Millam S, Holmes AC (1992) The determination of the petroselinic acid content of coriander (Coriandrum sativum) oil by capillary gas chromatography. Phytochem Anal 3:250–253

    Article  CAS  Google Scholar 

  • Guha S, Sharangi AB, Debnath S (2013) Effect of different sowing times and cutting management on phenology and yield of offseason coriander under protected cultivation. Trend Hortic Res 3:27–32

    Article  Google Scholar 

  • Hashem Dabaghian F, Kamalinejad M, Shojaii A, Abdollahi Fard M, Ghushegir SA (2012) Review of antidiabetic plants in Iranian traditional medicine and their efficacy. J Med Plant 11:1–11

    Google Scholar 

  • Hassan SF (2019) Shoots regeneration in callus tissue of coriander plant (Coriandrum sativum L.) in vitro. Plant Arch 19:1203–1205

    Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ – Calif Agric Exp Stn 347:1–32

    Google Scholar 

  • Iqbal MJ, Butt MS, Suleria HAR (2019) Coriander (Coriandrum sativum L.): Bioactive molecules and health effects. In: Mérillon JM, Ramawat K (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham, pp 2199–2235

    Chapter  Google Scholar 

  • Jethani I (2000) Effect of inhibitor on the germination of coriander and cumin seeds. New Bot 27:25–28

  • Kapoor R, Giri B, Mukerji KG (2002) Mycorrhization of coriander (Coriandrum sativum L) to enhance the concentration and quality of essential oil. J Sci Food Agric 82:339–342

    Article  CAS  Google Scholar 

  • Kataeva NV, Popowich EA (1993) Maturation and rejuvenation of Coriandrum sativum shoot clones during micropropagation. Plant Cell Tiss Organ Cult 34:141–148

    Article  Google Scholar 

  • Khah EM (2009) Effect of sowing date and cultivar on leaf yield and seed production of coriander (Coriandrum sativum L.). J Food Agric Environ 7:332–334

    Google Scholar 

  • Khodadadi M, Dehghani H, Javaran MJ, Christopher JT (2016) Fruit yield, fatty and essential oils content genetics in coriander. Ind Crop Prod 94:72–81

    Article  CAS  Google Scholar 

  • Kim SW, Park MK, Bae KS, Rhee MS, Liu JR (1996a) Production of petroselinic acid from cell suspension cultures of Coriandrum sativum. Phytochem 42:1581–1582

    Article  CAS  Google Scholar 

  • Kim SW, Park MK, Liu JR (1996b) High frequency plant regeneration via somatic embryogenesis in cell suspension cultures of coriander (Coriandrum sativum L.). Plant Cell Rep 15:751–753

    Article  CAS  PubMed  Google Scholar 

  • Kundu S, Salma U, Gantait S (2018) Cryopreservation of medicinal herbs: major breakthroughs, hurdles and future. In: Kumar N (ed) Biotechnological approaches for medicinal and aromatic plants. Springer Nature, Singapore, pp 353–381

    Chapter  Google Scholar 

  • Lal G, Metha RS, Singh RM, Choudhary K, Maheria SP (2017) Effects of sowing dates on plant growth and seed yield of ajmer green coriander-1 in winter season. Int J Seed Spices 7:14–18

    Google Scholar 

  • Laribi B, Kouki K, M’Hamdi M, Bettaieb T (2015) Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia 103:9–26

    Article  CAS  PubMed  Google Scholar 

  • Lev E, Amar Z (2008) “Fossils” of practical medical knowledge from medieval Cairo. J Ethnopharmacol 119:24–40

    Article  PubMed  Google Scholar 

  • Liu JR, Kim SW, Oh SC (2002) In vitro culture and the production of secondary metabolites in Coriandrum sativum L. (Coriander). In: Medicinal and Aromatic Plants XII. Springer, Berlin, Heidelberg pp 13–22

  • Lloyd G, McCown B (1981) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by shoot tip culture. Intl Plant Prop Soc Proc 30:421–427

    Google Scholar 

  • López PA, Widrlechner MP, Simon PW, Rai S, Boylston TD, Isbell TA, Bailey TB, Gardner CA, Wilson LA (2008) Assessing phenotypic, biochemical, and molecular diversity in coriander (Coriandrum sativum L.) germplasm. Genet Resour Crop Evol 55:247–275

    Article  Google Scholar 

  • Malhotra SK (2016) Research and development of seed spices for enhancement of productivity and profitability in the era of climatic change. Indian J Arecanut Spices Med Plant 18:3–19

    Google Scholar 

  • Malhotra SK, Vashishtha BB, Apparao VV (2006) Influence of nitrogen, Azospirillum sp. and farmyard manure on growth, yield and incidence of stem gall disease in coriander (Coriandrum sativum L.). J Spices Arom Crop 15:115–117

    Google Scholar 

  • Marc EB, Nelly A, Annick DD, Frederic D (2008) Plants used as remedies anti-rheumatic and anti-neuralgic in the traditional medicine of Lebanon. J Ethnopharmacol 120:315–334

    Article  Google Scholar 

  • Meena SK, Jat NL, Sharma B, Meena VS (2014) Effect of plant growth regulators and sulphur on productivity of coriander (Coriandrum sativum L.) in Rajasthan. Ecoscan 6:69–73

    Google Scholar 

  • Melo RDA, Resende LV, Menezes D, Beck APA, Costa JCD, Coutinho AE, do Nascimento AVS (2011) Genetic similarity between coriander genotypes using ISSR markers. Hortic Brasil 29:526–530

    Article  Google Scholar 

  • Misra N (1987) Mycotoxins in spices. III. Investigation on the natural occurrence of aflatoxins in Coriandrum sativum L. J Food Sci Technol 24:324–325

    CAS  Google Scholar 

  • Mohamed EA, ElLatif HSH, Hemmat IM (2001) Influence of pre-treatments and dehydration process on chlorophylls retention of parsley, coriander and peppermint leaves. Egyptian J Agric Res 79:1111–1125

    Google Scholar 

  • Moniruzzaman M, Rahman MM, Hossain MM, Karim AJMS, Khaliq QA (2014) Response of coriander (Coriandrum sativum L.) foliage to different rates and methods of nitrogen application. Bangladesh J Agric Res 39:359–371

    Article  Google Scholar 

  • Msaada K, Taarit MB, Hosni K, Hammami M, Marzouk B (2009) Regional and maturational effects on essential oils yields and composition of coriander (Coriandrum sativum L.) fruits. Sci Hortic 122:116–124

    Article  CAS  Google Scholar 

  • Mujib A, Tonk D, Ali M (2014) Plant regeneration from protoplasts in Indian local Coriandrum sativum L.: scanning electron microscopy and histological evidences for somatic embryogenesis. Plant Cell Tiss Organ Cult 117:323–334

  • Mukherjee E, Gantait S, Kundu S, Sarkar S, Bhattacharyya S (2019) Biotechnological interventions on the genus Rauvolfia: recent trends and imminent prospects. Appl Microbiol Biotechnol 103:7325–7354

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy HN, Hahn EA, Paek KY (2008) Recurrent somatic embryogenesis and plant regeneration in Coriandrum sativum L. Sci Hortic 118:168–171

    Article  CAS  Google Scholar 

  • Mussarat S, Abdel-Salam NM, Tariq A, Wazir SM, Ullah R, Adnan M (2014) Use of ethnomedicinal plants by the people living around Indus River Evidence-based Complement. Alternat Med 2014:212634

    Google Scholar 

  • Naeemans M, Alaw Qotbi AA, Seidavi A, Norris D, Brown D, Ginindza, (2015) Effects of coriander (Coriandrum sativum L.) seed powder and extract on performance of broiler chickens. South Afr J Animal Sci 45:371–378

    Article  Google Scholar 

  • Narayani M, Srivastava S (2017) Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem Rev 16:1227–1252

  • Neffati M, Marzouk B (2008) Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crops Prod 28:137–142

    Article  CAS  Google Scholar 

  • Neffati M, Sriti J, Hamdaoui G, Kchouk ME, Marzouk B (2011) Salinity impact on fruit yield, essential oil composition and antioxidant activities of Coriandrum sativum fruit extracts. Food Chem 124:221–225

    Article  CAS  Google Scholar 

  • Nemeth E, Szekely G (2000) Floral biology of medicinal plants I Apiaceae Species. Int J Hortic Sci 6:133–136

    Google Scholar 

  • Nguyen QH, Talou T, Cerny M, Evon P, Othmane M (2015) Oil and Fatty acid accumulation during coriander (Coriandrum sativum L.) fruit ripening under organic cultivation. Crop J 3:366–369

    Article  Google Scholar 

  • NHB-National Horticulture Board (2020) Area and production of horticultural crops for 2018–19 (3rd Advance Estimates). http://nhb.gov.in/Statistics.aspx.(Accessed on 01.08.2020)

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  PubMed  Google Scholar 

  • Nowak J, Szemplinski W (2014) Influence of sowing date on yield and fruit quality of coriander (Coriandrum sativum L.). Acta Sci Pol Hortorum Cultus 13:83–96

  • Omidbaigi R, Rahimi S, Naghavi MR (2009) Evaluation of molecular and essential oil diversity of coriander (Coriandrum sativum L.) landraces from Iran. J Essential Oil Bearing Plant 12:46–54

    Article  CAS  Google Scholar 

  • Önder A (2018) Coriander and its phytoconstituents for the beneficial effects. Potential of Essential Oils, 165

  • Padalia K, Bargali K, Bargali SS (2015) How does traditional home-gardens support ethnomedicinal values in Kumaun Himalayan Bhabhar belt, India. Afr J Trad Complement Alternat Med 12:100–112

    Article  CAS  Google Scholar 

  • Palanyandy SR, Gantait S, Subramaniam S, Sinniah UR (2020) Cryopreservation of oil palm (Elaeis guineensis Jacq.) polyembryoids via encapsulation–desiccation. 3Biotech 10: 9

  • Panda MR, Chatterjee R, Pariari A, Chattopadhyay PK, Sharangi AB, Alam K (2007) Effect of growth regulators on growth, yield and quality of coriander. Indian J Hort 64:369–371

    Google Scholar 

  • Pareek N, Jakhar ML, Malik CP (2011) Analysis of genetic diversity in coriander (Coriandrum sativum L.) varieties using random amplified polymorphic DNA (RAPD) markers. J Microbiol Biotechnol Res 1:206–215

  • Patel CB, Amin AU, Patel AL (2013) effect of varying levels of nitrogen and sulphur on growth and yield of coriander (Coriandrum sativum L.). Bioscan 8:1285–1289

    CAS  Google Scholar 

  • Polshkov AN (2001) Composition of coriander oil and its change during storage. Russ Agric Sci 12:33–35

    Google Scholar 

  • Popova E, Kim HH, Paek KY (2010) Cryopreservation of coriander (Coriandrum sativum L.) somatic embryos using sucrose preculture and air desiccation. Sci Hortic 124:522–528

    Article  CAS  Google Scholar 

  • Pramanik B, Sarkar S, Bhattacharyya S, Gantait S (2021) meta-Topolin-induced enhanced biomass production via direct and indirect regeneration, synthetic seed production, and genetic fidelity assessment of Bacopa monnieri (L.) Pennell, a memory-booster plant. Acta Physiol Plant 43:107

    Article  CAS  Google Scholar 

  • Prasad BK, Shanker U, Narayan N, Dayal S, Kishor A (1988) Physico-chemical changes in food reserve of coriander seed due to storage moulds. Indian Phytopathol 41:386–388

    Google Scholar 

  • Purseglove JW, Brown EG, Green CL, Robbins SRJ (1981) Spices, vol II. Longman, London and New York, pp 736–788

    Google Scholar 

  • Rajeshwari CU, Andallu B (2015) Bioactive phytoconstituents in methanolic extract and ethyl acetate fraction of methanolic extract of coriander (Coriandrum sativum L.) seeds. Ann Phytomed 4:71–76

    CAS  Google Scholar 

  • Rajeshwari U, Andallu B (2011) Medicinal benefits of coriander (Coriandrum sativum L.). Spatula DD 1:51

    Article  Google Scholar 

  • Randall RP (2012) A Global Compendium of Weeds. Perth, Australia: Department of Agriculture and Food Western Australia, p. 1124

  • Romanenko LG, Nevkrytaya NV, Kuznetsova E-Y (1991) Features of pollination in coriander. Selektsiya i Semenovodstvo Moskva 5:16–17

    Google Scholar 

  • Sarada C, Giridhar K, Yellamen R, Venkatareddy P (2011) Weather modification for off season production of coriander (Coriandrum sativum L.) for leaf. J Agric Meteorol 13:54–57

    Google Scholar 

  • Sarkar A, Sharangi AB, Soujannya S, Datta A (2020) Seed yield and quality of coriander (Coriandrum sativum L.) as influenced by seed priming. J Crop Weed 16:51–55

    Article  Google Scholar 

  • Sastry EVD, Singh D, Shekhawat KS, Rajput SS, Shivran AC (2011) Genetic diversity and conservation in coriander. Souvenir Abstr SYMSAC VI:71–78

  • Saxena SN, Sharma YK, Rathore SS, Singh KK, Barnwal P, Saxena R, Upadhyay P, Anwer MM (2015) Effect of cryogenic grinding on volatile oil, oleoresin content and anti-oxidant properties of coriander (Coriandrum sativum L.) genotypes. J Food Sci Technol 52:568–573

    Article  CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Sharangi AB, Chatterjee R, Nanda MK, Kumar R (2011) Growth and leaf yield dynamics of cool season coriander as influenced by cutting and foliar nitrogen application. J Plant Nutr 34:1762–1768

    Article  CAS  Google Scholar 

  • Sharangi AB, Guha S, Chakrabarty I (2015) Effect of different packaging materials on storage life of fresh coriander (Coriandrum sativum L) leaves. Nat Sci 13:100–108

    Google Scholar 

  • Sharangi AB, Roychowdhury A (2014) Phenology and yield of coriander as influenced by sowing dates and irrigation. The Bioscan 9:13–20.

  • Sharma LK, Agarwal D, Rathore SS, Malhotra SK, Saxena SN (2016) Effect of cryogenic grinding on volatile and fatty oil constituents of cumin (Cuminum cyminum L.) genotypes. J Food Sci Technol 53:2827–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Rajpurohit D, Jain D, Verma P, Joshi A (2019) Molecular characterization of coriander (Coriandrum sativum L.) genotypes using random amplified polymorphic DNA (RAPD) markers. J Pharmacogn Phytochem 8:4770–4775

    CAS  Google Scholar 

  • Shoba N, Rajamani K (2009) National Seminar on Production System Management in Adverse Conditions for Higher Productivity in A & N Islands. pp. 38

  • Singh G, Maurya S, De Lampasona MP, Catalan CAN (2006) Studies on the essential oils, Part 41. Chemical composition, antifungal, antioxidant and sprout suppressant activities of coriander (Coriandrum sativum) essential oil and its oleoresin. Flavour Frag J 21:472–479

    Article  CAS  Google Scholar 

  • Singh RK, Verma SS, Meena RS, Kumar R (2013) Characterization of coriander (Coriandrum sativum L.) varieties using SDS-PAGE and RAPD markers. Afr J Biotechnol 12:1189–1195

    CAS  Google Scholar 

  • Singh S, Buttar GS, Singh SP, Brar DS (2005) Effect of different sowing dates and row spacings on yield of coriander (Coriandrum sativum). J Med Aromatic Plant Sci 27:301–302

    Google Scholar 

  • Singh SK, Kakani RK, Meena RS, Pancholy A, Pathak R, Raturi A (2012) Studies on genetic divergence among Indian varieties of a spice herb Coriandrum Sativum. J Environ Biol 33:781

    CAS  PubMed  Google Scholar 

  • Song X, Wang J, Li N, Yu J, Meng F, Wei C, ... Gong K (2020a) Deciphering the high‐quality genome sequence of coriander that causes controversial feelings. Plant Biotechnol J 18:1444 - 1456

  • Song X, Nie F, Chen W, Ma X, Gong K, Yang Q, Yu T (2020b) Coriander Genomics Database: a genomic, transcriptomic, and metabolic database for coriander. Hortic Res 7:1–10

  • Sriti J, Talou T, Faye M, Vilarem G, Marzouk B (2011) Oil extraction from coriander fruits by extrusion and comparison with solvent extraction processes. Ind Crop Prod 33:659–664

    Article  CAS  Google Scholar 

  • Srivastava RK, Chandra S (1985) Studies on seed mycoflora of some spices in India - qualitative and quantitative estimations. Int Biodeteriorat 21:19–25

    Google Scholar 

  • Stephan R, Jayabalan N (2001) Propagation of Coriandrum sativum L. through somatic embryogenesis. Indian J Exp Biol 39:387–389

    CAS  PubMed  Google Scholar 

  • Thakral KK, Singh GR, Pandey UC, Srivastava VK (1992) Effect of nitrogen levels on the production of green leaves and seed yield of coriander cv. Narnaul Selection. Haryana Agric Univ J Res 22:35–39

    Google Scholar 

  • Thapa A, Rathore SS, Sharma LK, Agrawal D, Saxena SN (2015) Plant regeneration in coriander (Coriandrum sativum L.). Int J Seed Spices 5:63–66

    Google Scholar 

  • Tomar-Rukam S, Kulkarni GU, Parakhia MV, Thakkar JR, Rathod VM, Solanki RK, Golakiya BA (2014) Genetic diversity analysis in coriander (Coriandrum sativum L.) genotypes through morphological and molecular characterization. Res J Biotech 9:1–11

    Google Scholar 

  • Tulsani NJ, Hamid R, Jacob F, Umretiya NG, Nandha AK, Tomar RS, Golakiya BA (2020) Transcriptome landscaping for gene mining and SSR marker development in coriander (Coriandrum sativum L.). Genomics 112:1545–1553

  • Vavilov NI (1992) The phyto geographical basis for plant breeding studies of the original material used for plant breeding. In: N.I. Vavilov – Origin and Geography of Cultivated Plant, Dorofeev VF (Ed.). Cambridge University Press, Cambridge, pp. 316–366

  • Verma A, Parihar R, Baishya B (2019) Identification of metabolites in coriander seeds (Coriandrum sativum L.) aided by ultrahigh resolution total correlation NMR spectroscopy. Magn Reson Chem 57:304–316

    Article  CAS  PubMed  Google Scholar 

  • Vrabcheva TM (2000) Mycotoxins in spices. Vopr Pitan 69:40–43

    CAS  PubMed  Google Scholar 

  • White PR (1963) The cultivation of animal and plant cells. 2nd Ed, Ronald Press Co., New York. ISBN: 0826093809, pp. 22

  • Witt CM, Berling NEJ, Rinpoche NT, Cuomo M, Willich SN (2009) Evaluation of medicinal plants as part of Tibetan medicine prospective observational study in Sikkim and Nepal. J Alternat Complement Med 15:59–65

    Article  Google Scholar 

  • Yang Z, Li C, Jia Q, Zhao C, Taylor DC, Li D, Zhang M (2020) Transcriptome analysis reveals candidate genes for petroselinic acid biosynthesis in fruits of Coriandrum sativum L. J Agric Food Chem 68:5507–5520

    Article  CAS  PubMed  Google Scholar 

  • Yeung EC, Bowra S (2011) Embryo and endosperm development in coriander (Coriandrum sativum). Botany 89:263–273

    Article  Google Scholar 

  • Yousuf MN, Brahma S, Kamal MM, Akter S, Chowdhury MEK (2014) Effect of nitrogen, phosphorus, potassium, and sulphur on the growth and seed yield of coriander (Coriandrum sativum L.). Bangladesh J Agril Res 39:303–309

    Article  Google Scholar 

  • Zee SY (1981) Studies on adventive embryo formation in the petiole explants of coriander (Coriandrum sativum). Protoplasma 107:21–26

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the e-library assistance from the Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India. We are further thankful to the anonymous reviewer(s) and the editor of this article for their critical comments and suggestions on the manuscript.

Funding

Self-funded.

Author information

Authors and Affiliations

Authors

Contributions

SG and ABS conceived the idea of the review and surveyed the literature; SG, ABS, MM, and NKM drafted the manuscript equally; SG and ABS scrutinized and corrected the manuscript to its final version. All the authors read and approved the final version of the manuscript prior to its submission.

Corresponding authors

Correspondence to Saikat Gantait or Amit Baran Sharangi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised. Reference details for Jethani (2000) is now added in the References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gantait, S., Sharangi, A.B., Mahanta, M. et al. Agri-biotechnology of coriander (Coriandrum sativum L.): an inclusive appraisal. Appl Microbiol Biotechnol 106, 951–969 (2022). https://doi.org/10.1007/s00253-022-11787-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-022-11787-4

Keywords

Navigation