Skip to main content
Log in

Azaphilone alkaloids: prospective source of natural food pigments

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Azaphilone, biosynthesized by polyketide synthase, is a class of fungal metabolites. In this review, after brief introduction of the natural azaphilone diversity, we in detail discussed azaphilic addition reaction involving conversion of natural azaphilone into the corresponding azaphilone alkaloid. Then, setting red Monascus pigments (a traditional food colorant in China) as example, we presented a new strategy, i.e., interfacing azaphilic addition reaction with living microbial metabolism in a one-pot process, to produce azaphilone alkaloid with a specified amine residue (red Monascus pigments) during submerged culture. Benefit from the red Monascus pigments with a specified amine residue, the influence of primary amine on characteristics of the food colorant was highlighted. Finally, the progress for screening of alternative azaphilone alkaloids (production from interfacing azaphilic addition reaction with submerged culture of Talaromyces sp. or Penicillium sp.) as natural food colorant was reviewed.

Key points

Azaphilic addition reaction of natural azaphilone is biocompatible

Red Monascus pigment is a classic example of azaphilone alkaloids

Azaphilone alkaloids are alterative natural food colorant

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achard M, Beeler AB Jr, Porco JA (2012) Synthesis of azaphilone-based chemical libraries. ACS Comb Sci 14:236–244

    PubMed  PubMed Central  CAS  Google Scholar 

  • Arai T, Kojima R, Motegi Y, Kato J, Kasumi T, Ogihara JPP-O, PP-V, (2015) Monascus pigments homologues, production, and phylogenetic analysis in Penucllium purpurogenum. Fung Biol 119:1226–1236

    CAS  Google Scholar 

  • Asai T, Tsukada K, Ise S, Shirata N, Hashimoto M, Fujii I, Gomi K, Nakagawara K, Kodama EN, Oshima Y (2015) Use of a biosynthetic intermediate to explore the chemical diversity of pseudo-natural fungal polyketides. Nature Chem 7:737–743

    CAS  Google Scholar 

  • Bai W, Jing L-L, Guan Q-Y, Tan R-X (2021) Two new azaphilone pigments from Talaromyces albobiverticillius and their anti-inflammatory activity. J Asian Nat Prod Research 23(4):325–332

    CAS  Google Scholar 

  • Balakrishnan B, Karki S, Chiu SH, Kim HJ (2013) Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 97:6337–6345

    PubMed  CAS  Google Scholar 

  • Barrios-Gonzalez J (2012) Solid-state fermentation: physiology of solid medium, its molecular basis and applications. Process Biochem 47:175–185

    CAS  Google Scholar 

  • Becker K, Pfutze S, Kuhnert E, Cox RJ, Stadler M, Surup F (2021a) Hybridorubrins A-D: azaphilone heterodimers from stromata of hypoxylon fragiforme and insights into the biosynthetic machinery for azaphilone diversification. Chem Eur J 27:1438–1450

    PubMed  CAS  Google Scholar 

  • Becker K, Kuhnert E, Cox RJ, Surup F (2021b) Azaphilone pigments from Hypoxylon rubiginosum and H. texense: absolute configuration, bioactivity, and biosynthesis. Eur J Org Chem 36:5094–5103

    Google Scholar 

  • Bijinu B, Suh J-W, Park S-H, Kwon H-J (2014) Delineating Monascus azaphilone pigments biosynthesis: oxidoreductive modifications determine the ring cyclization pattern in the azaphilone biosynthesis. RSC Adv 4:59405–59408

    CAS  Google Scholar 

  • Blanc PJ, Laussac JP, Bars JL, Bars PL, Loret MO, Pareilleux A, Prome D, Prome JC, Santerre AL, Goma G (1995) Characterization of monascidin A from Monascus as citrinin. Intern J Food Microbiol 27:201–213

    CAS  Google Scholar 

  • Buchi G, White JD, Wogan GN (1965) The structures of mitorubrin and mitorubrinol. J Am Chem Soc 87(15):3484–3489

    Google Scholar 

  • Chai Y-J, Cui C-B, Li C-W, Wu C-J, Tian C-K, Hua W (2012) Activation of the dormant secondary metabolite production by introducing gentamicin-resistance in a marine-derived Penicillium purpurogenum G19. Mar Drug 10:559–582. https://doi.org/10.3390/md10030559

    Article  CAS  Google Scholar 

  • Chen W, Chne R, Liu Q, He Y, He K, Ding X, Kang L, Guo X, Xie N, Zhou Y, Lu Y, Cox RJ, Molnar I, Li M, Shao Y, Chen F (2017) Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem Sci 8:4917–4925

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen G, Bei Q, Huang T, Wu Z (2018) Variations in Monascus pigment characteristics and biosynthetic gene expression using resting cell culture systems combined with extractive fermentation. Appl Microbiol Biotechnol 102:117–126

    PubMed  Google Scholar 

  • Chen C, Tao H, Chen W, Yang B, Zhou X, Luo X, Liu Y (2020) Recent advances in the chemistry and biology of azaphilones. RSC Adv 10:10197–10220

    CAS  Google Scholar 

  • Chen D, Wang Y, Chen M, Fan P, Li G, Wang C (2021) Ammonium nitrate regulated the color characteristic changes of pigments in Monascus purpureus M9. AMB Expr 11:3. https://doi.org/10.1186/s13568-020-01165-6

    Article  CAS  Google Scholar 

  • Choe D, Song SM, Shin CS, Johnston TV, Ahn HJ, Kim D, Ku S (2020) Production and characterization of anti-inflammatory Monascus pigment derivatives. Foods 9:858. https://doi.org/10.3390/foods9070858

    Article  PubMed Central  CAS  Google Scholar 

  • Curtin TP, Reilly J (1940) Sclerotiorine, C20H20O5Cl, a chlorine-containing metabolitic product of Penicillium sclerotiorin van Beyma. Biochem J 34(10–11):1418–1421

    PubMed  PubMed Central  Google Scholar 

  • de Oliveira F, Pedrolli DB, Teixeira MFS, de Carvalho S-E (2019) Water-soluble fluorescent red colorant production by Talaromyces amestolkiae. Appl Microbiol Biotechnol 103:6529–6541

    PubMed  Google Scholar 

  • de Oliveira F, Rocha ILD, Pinto DCGA, Ventura SPM, dos Santos AG, Crevelin EJ, de Carvalho Santos-Ebinuma V (2022) Identification of azaphilone derivatives of Monascus colorants from Talaromyces amestolkiae and their halochromic properties. Food Chem 372:131214

    PubMed  Google Scholar 

  • Ding L, Huang H, Lu F, Lu J, Zhou X, Zhang Y, Cai M (2021) Transposon insertion mutation of Antarctic psychrotrophic fungus for red pigment production adaptive to normal temperature. J Ind Microbiol Biotechnolhttps://doi.org/10.1093/jimb/kuab073

  • Endo A (1980) Monacoiln K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme a reductase. J Antibiot 18:334–336

    Google Scholar 

  • Frisvad JC, Yilmaz N, Thrane U, Rasmussen KB, Houbraken J, Samson RA (2013) Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLoS ONE 8(12):e84102. https://doi.org/10.1371/journal.pone.0084102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao J-M, Yang S-X, Qin J-C (2013) Azaphilones: chemistry and biology. Chem Rew 113:4755–4811

    CAS  Google Scholar 

  • General T, Kim H-J, Prasad B, Ngo HTA, Vadakedath N, Cho M-G (2014a) Fungal utilization of a known and safe macroalga for pigment production using solid-state fermentation. J Appl Phycol 26:1547–1555

    CAS  Google Scholar 

  • General T, Prasad B, Kim H-J, Vadakedath N, Cho M-G (2014b) Saccharina japonica, a potential feedstock for pigment production using submerged fermentation. Biotechnol Bioprocess Eng 19:711–719

    CAS  Google Scholar 

  • Gomes DC, Takahashi JA (2016) Sequential fungal fermentation biotransformation process to produce a red pigment from sclerotiorin. Food Chem 210:355–361

    Google Scholar 

  • Gray RW, Whalley WB (1971) The chemistry of fungi. Part LXIII. Rubrorotiorin, a metabolite of Penicillium hirayamae udagawa. J Chem Soc C 3575–3577

  • Gu B, Xie H, Zhang X, Wang Z (2019) Merging of a chemical reaction with microbial metabolism via inverse phase transfer catalysis for efficient production of red Monascus pigments. React Chem Eng 4:1447–1458

    CAS  Google Scholar 

  • Hajjaj H, Klaebe A, Loret MO, Tzedakis T, Goma G, Blanc PJ (1997) Production and identification of N-glucosylrubropunctamine and N-glucosylmonascorbramine from Monascus ruber and occurrence of electron donor-acceptor complex in these red pigments. Appl Environ Microbiol 63:2671–2678

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hebra T, Elie N, Poyer S, van Elslande E, Touboul D, Eparvier V (2021) Dereplication, annotation, and characterization of 74 potential antimicrobial metabolites from Penicillium Sclerotiorum using t-SNE molecular networks. Metabolites 11:444. https://doi.org/10.3390/metabo11070444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    PubMed  Google Scholar 

  • Hong J-L, Wu L, Lu J-Q, Zhou W-B, Cao Y-J, Lv W-L, Liu B, Rao P-F, Ni L, Lv X-C (2020) Comparative transcriptomic analysis reveals the regulatory effects of inorganic nitrogen on the biosynthesis of Monascus pigments and citrinin. RSC Adv 10:5268–5282

    CAS  Google Scholar 

  • Hsu Y-W, Hsu L-C, Liang Y-H, Kuo Y-H, Pan T-M (2011) New bioactive orange pigments with yellow fluorescence from Monascus-fermented Dioscorea. J Agric Food Chem 59:4512–4518

    PubMed  CAS  Google Scholar 

  • Hu W, Xie F, Tan L, Xu S, Qin A (2019) The process technology of deep layer fermentation of Monascus spp. Meat Ind (china) 454:34–39

    Google Scholar 

  • Huang Z, Xu Y, Li L, LI Y, (2008) Two new Monascus metabolites with strong blue fluorescence isolated from Red Yeast Rice. J Agric Food Chem 56:112–118

    PubMed  CAS  Google Scholar 

  • Huang Y, Liu L, Zheng G, Zhang X, Wang Z (2019) Efficient production of red Monascus pigments with single non-natural amine residue by in situ chemical modification. World J Microbiol Biotechnol 35:13

    PubMed  Google Scholar 

  • Huang H, Ding L, Lu J, Wang N, Cai M (2020) Combinatorial strategies for production improvement of red pigments from Antarctic fungus Geomyces sp. J Food Sci 85(10):3061–3071

    PubMed  CAS  Google Scholar 

  • Huang D, Wang Y, Zhang J, Xu H, Bai J, Zhang H, Jiang X, Yuan J, Lu G, Jiang L, Liao X, Liu B, Liu H (2021) Integrative metabolomic and transcriptomic analyses uncover metabolic alterations and pigment diversity in Monascus in response to different nitrogen sources. mSystems 6: e00807–21, https://doi.org/10.1128/mSystems.00807-21

  • Isbrandt T, Frisvad JC, Madsen A, Larsen TO (2020a) New azaphilones from Aspergillus neoglaber. AMB Expr 10:145. https://doi.org/10.1186/s13568-020-01078-4

    Article  CAS  Google Scholar 

  • Isbrandt T, Tolborg G, Odum A, Workman M, Larsen TO (2020b) Atrorosins: a new subgroup of Monascus pigments from Talaromyces atroroseus. Appl Micorbiol Biotechnol 104:615–622

    CAS  Google Scholar 

  • Jackman GB, Robertson A, Travers RB, Whalley WB (1958) The chemistry of fungi. Part XXXIV. Rotiorin, a metabolite of Penicillium sclerotiorum van Beyma. J Chem Soc 372:1825–1832

    Google Scholar 

  • Jin H-J, Zhang X, Cao H, Niu Y-J, Li C, Liu H (2018) Chemical composition, security and bioactivity of the red pigments from Penicillium purpurogenum Li 3. Chem Biodiver 15:e1800300. https://doi.org/10.1002/cbdv.201800300

    Article  CAS  Google Scholar 

  • Jung H, Kim C, Kim K, Shin CS (2003) Color characteristics of Monascus pigments derived by fermentation with various amino acids. J Agric Food Chem 51:1302–1306

    PubMed  CAS  Google Scholar 

  • Kang B, Zhang X, Wu Z, Qi H, Wang Z (2013) Effect of pH and nonionic surfactant on profile of intracellular and extracellular Monascus pigments. Process Biochem 48:759–767

    CAS  Google Scholar 

  • Kang B, Zhang X, Wu Z, Wang Z, Park S (2014) Production of citrinin-free Monascus pigments by submerged culture at low pH. Enzyme Microb Technol 55:50–57

    PubMed  CAS  Google Scholar 

  • Laakso JA, Raulli R, McElhaney-Feser GE, Actor P, Underiner TL, Hotovec BJ, Mocek U, Cihlar RL Jr, Broedel SE (2003) CT2108 A and B: new fatty acid synthase inhibitors as antifungal agents. J Nat Prod 66(8):1041–1046

    PubMed  CAS  Google Scholar 

  • Lagashetti AC, Dufosse L, Singh SK, Singh PN (2019) Fungal pigments and their prospects in different industries. Microorganisms 7:604. https://doi.org/10.3390/microoorganisms7120604

    Article  PubMed Central  CAS  Google Scholar 

  • Lebeau J, Petit T, Fouillaud M, Dufossé L, Caro Y (2020) Alternative extraction and characterization of nitrogen-containing azaphilone red pigments and ergosterol derivatives from the marine-derived fungal Talaromyces sp. 30570 strain with industrial relevance. Microorganisms 8:1920. https://doi.org/10.3390/microorganisms8121920

    Article  PubMed Central  CAS  Google Scholar 

  • Li L, Chen S, Gao M, Ding B, Zhang J, Zhou Y, Liu Y, Yang H, Wu Q, Chen F (2019) Acidic conditions induce the accumulation of orange Monascus pigments during liquid-state fermentation of Monascus ruber M7. Appl Microbiol Biotechnol 103:8393–8402

    PubMed  CAS  Google Scholar 

  • Li Z, Yang S, Zhang M, Liu H, Peng L (2020) Stability and antioxidant properties of red pigments produced by Talaromyces atroroseus. Food Ferment Ind (china) 46(12):51–56

    Google Scholar 

  • Lin TF, Yakushijin K, Buchi GH, Demain AL (1992) Formation of water-soluble Monascus red pigments by biological and semi-synthesis processes. J Ind Microbiol 9:173–179

    CAS  Google Scholar 

  • Liu L, Zhao J, Huang Y, Xin Q, Wang Z (2018) Diversifying of chemical structure of native Monascus pigments. Front Microbiol 9:3143. https://doi.org/10.3389/fmicb.2018.03143

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wu S, Wang W, Zhang X, Wang Z (2020) Sulfonation of Monascus pigments to produce water-soluble yellow pigments. Dyes Pigments 173:107965

    CAS  Google Scholar 

  • Liu L, Zheng J, Zhang X, Wang Z (2020b) Interfacing a phosphate catalytic reaction with a microbial metabolism for the production of azaphilone alkaloids. React Chem Eng 5:2048–2052

    CAS  Google Scholar 

  • Liu H, Zhang J, Lu G, Wang F, Shu L, Xu H, Li Z, Wang Y, Guo Q, Wu S, Jiang L, Wang C, Huang D, Liu B (2021a) Comparative metabolomics analysis reveals the metabolic regulation mechanism of yellow pigment overproduction by Monascus using ammonium chloride as a nitrogen source. Appl Microbiol Biotechnol 105:6369–6379

    PubMed  CAS  Google Scholar 

  • Liu L, Zhang X, Wang Z (2021b) Highly efficient production of tailored Monascus pigments by using a biocompatible chemical reaction interfacing with microbial metabolism. ACS Sustain Chem Eng 9:3347–3356

    CAS  Google Scholar 

  • Lv F, Liu L, Huang Y, Zhang X, Wang Z (2018a) Production of Monascus pigments as extracellular crystals by cell suspension culture. Appl Microbiol Biotechnol 102:677–687

    Google Scholar 

  • Lv J, Qian G-F, Chen L, Liu H, Xu H-X, Xu G-R, Zhang B-B, Zhang C (2018b) Efficient biosynthesis of natural yellow pigments by Monascus purpureus in a novel integrated fermentation system. J Agric Food Chem 66:918–925

    PubMed  CAS  Google Scholar 

  • Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M (2000) Constituents of Red Yeast Rice, a traditional Chinese food and medicine. J Agric Food Chem 48:5220–5225

    PubMed  CAS  Google Scholar 

  • Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Fact 8:24. https://doi.org/10.1186/1475-2859-8-24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morales-Oyervides L, Oliveira J, Sousa-Gallagher M, Méndez-Zavala A, Montañez JC (2017) Perstraction of intracellular pigments through submerged fermentation of Talaromyces spp. in a surfactant rich media: a novel approach for enhanced pigment recovery. J Fungi 3:33. https://doi.org/10.3390/jof3030033

    Article  CAS  Google Scholar 

  • Morales-Oyervides L, Ruiz-Sanchez JP, Oliveira JC, Sousa-Gallagher MJ, Mendez-Zavala A, Giuffrida D, Dufosse L, Montanez J (2020) Biotechnological approaches for the production of natural colorants by Talromyces/Penicillium: a review. Biotechnol Adv 43:107601

    PubMed  CAS  Google Scholar 

  • Morales-Oyervides L, Ruiz-Sánchez JP, Oliveira JC, Sousa-Gallagher MJ, Morales-Martínez TK, Albergamo A, Salvo A, Giuffrida D, Dufossé L, Montañez J (2020) Medium design from corncob hydrolyzate for pigment production by Talaromyces atroroseus GH2: kinetics modeling and pigments characterization. Biochem Eng J 161:107698

    CAS  Google Scholar 

  • Nakajima H, Kimura Y, Hamasaki T (1992) Spiciferinone, an azaphilone phytotoxin produced by the fungus Cochliobolus spicifer. Phytochem 31(1):105–107

    CAS  Google Scholar 

  • Natsume M, Takahashi Y, Marumo S (1988) Chlamydospore-like cell inducing substances of fungi: close correlation between chemical reactivity with methylamine and biological activity. Agric Biol Chem 52:307–312

    CAS  Google Scholar 

  • Ngo AH, Bose S, Do LH (2018) Intracellular chemistry: integrating molecular inorganic catalysts with living systems. Chem Eur J 24:10584–10594

    PubMed  CAS  Google Scholar 

  • Ogihara J, Oishi K (2002) Effect of ammonium nitrate on the production of PP-V and monascorubrin homologues by Penicillium sp. AZ J Biosci Bioeng 93:54–59

    PubMed  CAS  Google Scholar 

  • Ogihara J, Kato J, Oishi K, Fujimot Y, Eguchi T (2000) Production and structural analysis of PP-V, a homologue of monascorubramine, produced by a new isolate of Penicillium sp. J Biosci Bioeng 90(5):549–554

    PubMed  CAS  Google Scholar 

  • Osmanova N, Schultze W, Ayoub N (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315–342

    CAS  Google Scholar 

  • Ouyang W, Liu X, Wang Y, Huang Z, Li X (2021) Addition of genistein to the fermentation process reduces citrinin production by Monascus via changes at the transcription level. Food Chem 343:128410

    PubMed  CAS  Google Scholar 

  • Pandit SG, Puttananjaiah MH, Peddha MS, Dhale MA (2020) Safety efficacy and chemical profiling of water-soluble Talaromyces purpureogenus CFRM02 pigment. Food Chem 310:125869

    PubMed  CAS  Google Scholar 

  • Pavesi C, Flon V, Mann S, Leleu S, Prado S, Franck X (2021) Biosynthesis of azaphilones: a review. Nat Prod Rep 38:1058–1071

    PubMed  CAS  Google Scholar 

  • Phonkerd N, Kanokmedhakul S, Kanokmedhakul K, Soytong K, Prabpai S, Kongsearee P (2008) Bis-spiro-azaphilones and azaphilones from the fungi Chaetomium cochliodes VTho1 and C. cochliodes CTh05. Tetrahedron 64:9636–9645

    CAS  Google Scholar 

  • Pimenta LPS, Gomes DC, Cardoso PG, Takahashi JA (2021) Recent findings in azaphilone pigments. J Fungi 7:541. https://doi.org/10.3390/jof7070541

    Article  CAS  Google Scholar 

  • Pyser JB, Dockrey SAB, Benitez AR, Joyce LA, Wiscons RA, Smith JL, Narayan ARH (2019) Stereodivergent, chemoenzymatic synthesis of azaphilone natural products. J Am Chem Soc 141:18551–18559

    PubMed  PubMed Central  CAS  Google Scholar 

  • Quang DN, Hashimoto T, Jacques F, Stadler M, Radulovic N, Asakawa Y (2005a) Sassafrins A-D, new antimicrobial azaphilones from the fungus Creosphaeria sassafras. Tetrahedron 61:1743–1748

    CAS  Google Scholar 

  • Quang DN, Hashimoto T, Nomura Y, Wollweber H, Hellwig V, Fournier J, Stadler M, Asakawa Y (2005b) Cohaerins A and B, azaphilones from the fungus Hypoxyloncohaerens, and comparison of HPLC-based metabolite profiles in Hypoxylon sect. Annulata Phytochem 66:797–809

    CAS  Google Scholar 

  • Sadler JC, Dennis JA, Johnson NW, Wallace S (2021) Interfacing non-enzymatic catalysis with living microorganisms. RSC Chem Biol 2:1073–1083

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stadler M, Anke H, Dekermendjian K, Reiss R, Sterner O, Witt R (1995) Novel bioactive azaphilones from fruit bodies and mycelial cultures of the Ascomycete Bulgaria inquinans (Fr.). Nat Prod Lett 7:7–14

    CAS  Google Scholar 

  • Su Y-C, Wang J-J, Lin T-T, Pan T-M (2003) Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol 30:41–46

    PubMed  CAS  Google Scholar 

  • Sun C, Ge X, Mudassir S, Zhou L, Yu G, Che Q, Zhang PJ, Gu Q, Zhu T, Li D (2019) New glutamine-containing azaphilone alkaloids from deep-sea-derived fungus Chaetomium globosum HDN151398. Mar Drugs 17:253. https://doi.org/10.3390/md17050253

    Article  PubMed Central  CAS  Google Scholar 

  • Suzuki S, Hosoe T, Nozawa K, Yaguchi T, Udagawa S-I, Kawai K-I (1999) Mitorubrin derivatives on Ascomata of some Talaromyces species of Ascomycetous fungi. J Nat Prod 62:1328–1329

    PubMed  CAS  Google Scholar 

  • Tang J-L, Zhou Z-Y, Yang T, Yao C, Wu L-W, Li G-Y (2019) Azaphilone alkaloids with anti-inflammatory activity from fungus Penicillium sclerotiorum cib-411. J Agric Food Chem 67:2175–2182

    PubMed  CAS  Google Scholar 

  • Thines E, Anke H, Sterner O (1998) Trichoflectin, a bioactive azaphilone from the Ascomycete Trichopezizella nidulus. J Nat Prod 61:306–308

    PubMed  CAS  Google Scholar 

  • Thrane U, Rasmussen KB, Petersen B, Rasmussen S, Sicheritz-Pontén T, Mortensen UH (2017) Genome sequence of Talaromyces atroroseus, which produces red colorants for the food industry. Genome Announc 5:e01736-e1816. https://doi.org/10.1128/genomeA.01736-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Ugwu CT, Ogbonna CN, Ogbonna JC, Aoyagi H (2021) Production and stability of pigments by Talaromyces purpurogenus LC128689 in an alternating air phase-liquid phase cultivation system. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.2204

    Article  PubMed  Google Scholar 

  • Vallace S, Balskus EP (2014) Opportunities for merging chemical and biological synthesis. Curr Opin Biotechnol 30:1–8

    Google Scholar 

  • Vallace S, Schultz EE, Balskus EP (2015) Using non-enzymatic chemistry to influence microbial metabolism. Curr Opin Chem Biol 25:71–79

    Google Scholar 

  • van Tieghem M (1884) Monascus, genre nouveau de l’ordre des Ascomycetes. Bull Soc Bot Fr 31:226–231

    Google Scholar 

  • Venkatachalam M, Zelena M, Cacciola F, Ceslova L, Girard-Valenciennes E, Clerc P, Dugo P, Mondello L, Fouillaud M, Rotondo A, Giuffrida D, Dufossé L (2018) Partial characterization of the pigments produced by the marine-derived fungus Talaromyces albobiverticillius 30548 towards a new fungal red colorant for the food industry. J Food Comp Anal 67:38–47

    CAS  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    PubMed  CAS  Google Scholar 

  • Wang X, Filho JGS, Hoover AR, King JB, Ellis TK, Powell DR, Cichewicz RH (2010) Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an atlantic-forest-soil-derived Penicillium citreonigrum. J Nat Prod 73:942–948

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wei W-G, Yao Z-J (2005) Synthesis studies toward chloroazaphilone and vinylogous γ-pyridones: two common natural product core structures. J Org Chem 70:4585–4590

    PubMed  CAS  Google Scholar 

  • Wei M-Y, Wang C-F, Wang K-L, Qian P-Y, Wang C-Y, Shao C-L (2017) Preparation, structure, and potent antifouling activity of sclerotioramine derivatives. Mar Biotechnol 19:372–378

    CAS  Google Scholar 

  • Williams K, Greco C, Bailey AM, Willis CL (2021) Core steps to the azaphilone family of fungal natural products. ChemBioChem 22:3027–3036

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wong H-C, Koehler PE (1983) Production of red water-soluble Monascus pigments. J Food Sci 48:1200–1203

    CAS  Google Scholar 

  • Woo PCY, Lam C-W, Tam EWT, Lee K-C, Yung KKY, Leung CKF, Sze K-H, Lau SKP, Yuen K-Y (2014) The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in Pencillium marneffei. Sci Rep 4:6728. https://doi.org/10.1038/srep06728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu S, Liu L, Zhang X, Wang Z (2021) Submerged culture of Penicillium sclerotiorum for production of rotiorin alkaloids by using biosynthetic and chemical catalytic cascade reactions. Process Biochem 104:10–18

    CAS  Google Scholar 

  • Xin Q, Pan T, Zhang W-M, Wang Z (2019) Submerged culture of marine-derived Penicillium sclerotiorum FS50 to produce sclerotiorin. Process Biochem 79:28–31

    CAS  Google Scholar 

  • Xiong X, Zhang X, Wu Z, Wang Z (2015) Coupled aminophilic reaction and directed metabolic channeling to red Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution. Process Biochem 50(2):180–187

    CAS  Google Scholar 

  • Yoshimura M, Yamamaka S, Mitsugi K, Hirose Y (1975) Production of Monascus-pigment in a submerged culture. Agr Biol Chem 39(9):1789–1795

    CAS  Google Scholar 

  • Zabala AO, Xu W, Choo Y-H, Tang Y (2012) Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC1015 reveals a hydroxylation-mediated pyran-ring formation. Chem Biol 19:1049–1059

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zaccarim BR, de Oliveira F, Passarini MRZ, Duarte AWF, Sette LD, Jozala AF, Teixeira MFS, de Carvalho Santos-Ebinuma V (2019) Sequencing and phylogenetic analyses of Talaromyces amestolkiae from amazon: a producer of natural colorants. Biotechnol Progr 35(1), DOI https://doi.org/10.1002/btpr.2684

  • Zhang S, Fang H, Yin C, Wei C, Hu J, Zhang Y (2019) Antimicrobial metabolites produced by Penicillium mallochii CCH01 isolated from the gut of ectropis oblique, cultivated in the presence of a histone deacetylase inhibitor. Front Microbiol 10:2186. https://doi.org/10.3389/fmicb.2019.02186

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Xin Y, Guo Y (2009) Study on the fingerprint profile of Monascus products with HPLC-FD, FAD and MS. Food Chem 113:705–711

    CAS  Google Scholar 

  • Zheng Y, Xin Y, Shi X, Guo Y (2010) Cytotoxicity of Monascus pigments and their derivatives to human cancer cells. J Agric Food Chem 58:9523–9528

    PubMed  CAS  Google Scholar 

  • Zhou B, Ma Y, Tian Y, Li J, Zhong H (2020) Quantitative proteomics analysis by sequential window acquisition of all theoretical mass spectra-mass spectrometry reveals inhibition mechanism of pigments and citrinin production of Monascus response to high ammonium chloride concentration. J Agric Food Chem 68:808–817

    PubMed  CAS  Google Scholar 

Download references

Funding

The financial support from the National Natural Science Foundation of China (No.: 21276155) is acknowledged.

National Natural Science Foundation of China,21276155,Zhilong Wang

Author information

Authors and Affiliations

Authors

Contributions

LL and ZW conceived the content. LL wrote the manuscript. ZW reviewed the manuscript.

Corresponding author

Correspondence to Zhilong Wang.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wang, Z. Azaphilone alkaloids: prospective source of natural food pigments. Appl Microbiol Biotechnol 106, 469–484 (2022). https://doi.org/10.1007/s00253-021-11729-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11729-6

Keywords

Navigation