Skip to main content

Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium

Abstract

Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy.

Key points

Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium.

Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries.

Quinones are grouped into families and compared between genera according to the revised taxonomy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

All data analyzed during this study is included in this published article.

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  • Abdel-Aziz MS, Ghareep MA, Saad AM, Refahy LA, Hamed AA (2018) Chromatographic isolation and structure elucidation of secondary metabolites from soil-inhabiting fungus Aspergillus fumigatus 3T-EGY. Acta Chromatogr 30:243–249

    CAS  Article  Google Scholar 

  • Abdelwahab MF, Fouad MA, Mamel MS, Özkaya FC, Kalscheur R, Müller WEG, Lin W, Liu Z, Ebrahim W, Daletos G, Proksch P (2018) Tanzawaic acid derivatives from freshwater sediment-derived fungus Penicillium sp. Fitoterapia 128:258–264

    CAS  PubMed  Article  Google Scholar 

  • Ali T, Inagaki M, Chai H-B, Wieboldt T, Rapplye C, Rakotondraibe LH (2017) Halogenated compounds from directed fermentation of Penicillium concentricum, an endophytic fungus of the liverwort Trichocolea tomentella. J Nat Prod 80:1397–1403

    CAS  PubMed  Article  Google Scholar 

  • Aly AH, Debbab A, Clements C, Edrade-Ebel R, Orlikova B, Diederich M, Wray V, Lin WH, Proksch P (2011) NF kappa B inhibitors and antitrypanosomal metabolites from the endophytic fungus Penicillium sp. Isolated from Limonium tubiflorum. Bioorg Chem Med 19:411–421

    Article  CAS  Google Scholar 

  • Anslow WK, Raistrick H (1938) Studies in the biochemistry of microorganisms LVII. Fumigatin (3-hydroxy-4-methoxy-2:5-toluquinone) and spinulosin (3:6-dihydroxy-4-methoxy-2:5-toluquinone), metabolic products respectively of Aspergillus fumigatus Fresenius and Penicillium spinulosum Thom. Biochem J 32:687–696

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Appell M, Moravec D, Bosma WB (2021) Quantum chemical study of the structure and properties of citrinin. Mol Simul 38:284–292

    Article  CAS  Google Scholar 

  • Arai K, Matsuda K, Kiriyama N, Nitta K, Yamamoto Y, Shimuzu S (1981a) Metabolites of Aspergillus terreus. IV. Metabolites of the strain IFO 8835 (2). The isolation and structure of indolyl benzoquinone pigments. Chem Pharm Bull 29:961–969

    CAS  Article  Google Scholar 

  • Arai K, Shimuzu S, Taguchi Y, Yamamoto Y (1981b) Metabolic products of Aspergillus terreus. IV Demethylation of asterriquinones. Chem Pharm Bull 29:991–999

    CAS  Article  Google Scholar 

  • Arnstein HRV, Cook AH (1947) Production of antibiotics by fungi. 3. Javanicin – an antibacterial pigment from Fusarium javanicum. J Chem Soc 1947:1021–1028

    Article  Google Scholar 

  • Arsenault GP (1968) Fungal metabolites. III. Quinones from Fusarium solani D2 purple and structure of (+)-solaniol. Tetrahedron 24:4745–4749

    CAS  Article  Google Scholar 

  • Arzanlou M, Samadi R, Frisvad JC, Houbraken J, Ghosta Y (2016) Two novel Aspergillus species from hypersaline soils of the national park of Lake Urmia. Iran Myc Prog 15:1081–1092

    Article  Google Scholar 

  • Ashley JN, Hobbs BC, Raistrick H (1937) Studies in the biochemistry of micro-organisms. LII. The crystalline colouring matter of Fusarium culmorum (W.G. Smith) Sacc. and related forms. Biochem J 31:385–397

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Astuti P, Pratoko OK, Rollando R, Hertiani T, Wahyuone S, Narrochimad A (2021) Bioactivities of a major compound from Arthrinium rasikravindrae, an endophytic fungus of Coleus amboinicus Lour. Fabad J Pharm Sci 46:23–30

    Google Scholar 

  • Awakawa T, Kaji T, Wakimoto T, Abe I (2012) A heptaketide naphthaldehyde produced by a polyketide synthase from Nectria haematococca. Bioorg Chem Med Lett 22:4338–4340

    CAS  Article  Google Scholar 

  • Awakawa T, Yokota K, Funa N, Doi F, Mori N, Watanabe H, Horinouchi S (2009) Physically discrete beta-lactamase-type thioesterase catalyzes product release in atrochrysone synthesis by iterative type I polyketide synthase. Chem Biol 16: 613–623

  • Baker PM, Roberts JC (1966) Studies in mycological chemistry. Part XXI. The structure of aurofusarin, a metabolite of some Fusarium species. J Chem Soc C 1966:2234–2237

    Article  Google Scholar 

  • Balajee SA, Baddley JW, Peterson SW, Nickle D, Varga J, Boey A, Lass-Flörl C, Frisvad JC, Samson RA, the ISHAM Working group on A. terreus (2009) Aspergillus alabamensis, a new clinically relevant species in the section Terrei. Eukaryot Cell 8:713–722

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Balan J, Fuska J, Kuhr I, Kuhrová V (1970) Bikaverin, an antibiotic from Gibberella fujikuroi, effective against Leishmania brasiliensis. Folia Microbiol 15:479–484

    CAS  Article  Google Scholar 

  • Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomyceteous fungi. FEMS Microbiol Rev 32:501–521

    CAS  PubMed  Article  Google Scholar 

  • Balibar CJ, Howard-Jones AR, Walsh CT (2007) Terrequinone A biosynthesis through L-tryptophan oxidation, dimerization and bisprenylation. Nat Chem Biol 3:584–592

    CAS  PubMed  Article  Google Scholar 

  • Bara R, Zerfass I, Aly AH, Goldbach-Gecke H, Raghavan V, Sass P, Mándi A, Wray V, Polavarapu PL, Pretsch A, Lin W, Kurtán T, Debbab A, Brötz-Oesterhelt H, Proksch P (2013) Atropisomeric dihydroanthracenones as inhibitors of multiresistant Staphylococcus aureus. J Med Chem 56:3257–3272

    CAS  PubMed  Article  Google Scholar 

  • Bao J, He F, Yu J-H, Zhai H-J, Cheng Z-Q, Jiang C-S, Zhang Y-Y, Zhang Y, Zhang X-Y, Chen G-Y, Zhang H (2018) New chromones from a marine-derived fungus, Arthrinium sp., and their biological activity. Molecules 23:1982

    PubMed Central  Article  CAS  Google Scholar 

  • Bao J, Zhang XY, Dong JJ, Xu XY, Nong XH, Qi SH (2014) Cyclopentane-condensed chromones from marine-derived fungus Penicillum oxalicum. Chem Lett 43:837–839

    CAS  Article  Google Scholar 

  • Barrett K, Jensen K, Meyer AS, Frisvad JC, Lange L (2020) Fungal secretome profile categorization of CAZymes by function and family corresponds to the taxonomy and phylogeny of fungi: example Aspergillus and Penicillium. Sci Rep 10:5158

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Barrios-González J, Miranda RU (2010) Biotechnological production and applications of statins. Appl Microbiol Biotechnol 85:869–883

    PubMed  Article  CAS  Google Scholar 

  • Barros Correira ACR, Barbosa R, Frisvad JC, Houbraken J, Souza-Motta CM (2020) The polyphasic re-identification of a Brazilian Aspergillus section Terrei collection led to the discovery of two new species. Myc Progr 19:885–903

    Article  Google Scholar 

  • Bell AA, Wheeler MH (1986) Biosynthesis and function of fungal melanins. Ann Rev Phytopathol 24:411–451

    CAS  Article  Google Scholar 

  • Berry S (2002) The chemical basis of membrane bioenergetics. J Mol Evol 54:595–613

    CAS  PubMed  Article  Google Scholar 

  • Birch AJ, Massy-Westropp RA (1957) Studies in relation to biosynthesis. II. The structure of nalgiovensin. J Chem Soc 1957:2215–2217

    Article  Google Scholar 

  • Birch AJ, Stapleford KSJ (1967) Structure of nalgiolaxin. J Chem Soc 1967:2570–2571

    Google Scholar 

  • Birkelund T, Johansen RF, Illum DG, Dyrskog SE, Østergaard JA, Falconer TM, Andersen C, Fridholm H, Overballe-Petersen S, Jensen JS (2021) Fatal 3-nitropropionic acid poisoning after consuming coconut ewater. Emer Infect Dis 27:278–280

    CAS  Article  Google Scholar 

  • Blachowicz A, Nicholas R, Bok JW, Choera T, Knox B, Lim FY, Huttenlocher A, Wang CCC, Venkateswaran K, Keller NP (2020) Contribution of spores secondary metabolites to UV-C protection and virulence vary in different isolates of Aspergillus fumigatus strains. Mbio 11:e03415-e3419

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Breen J, Dacre JC, Raistrick H, Smith G (1955) Studies in the biochemistry of microorganisms. 95. Rugulosin, a crystalline colouring matter of Penicillium rugulosum Thom. Biochem J 60:618–626

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Brown DW, Butchko RAE, Baker BE, Proctor RH (2012a) Phylogenomic and functional domain analysis of polyketide synthases in Fusarium. Fung Biol 116:318–331

    CAS  Article  Google Scholar 

  • Brown DW, Butchko RAE, Busman M, Proctor RH (2012b) Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment produced by Fusarium verticillioides. Fung Genet Biol 49:521–532

    CAS  Article  Google Scholar 

  • Brown DW, Proctor RH (2016) Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium. Fung Genet Biol 89:37–51

    CAS  Article  Google Scholar 

  • Bugni TS, Abbanat D, Brnan VS, Maiese WM, Greenstain M, von Wagoner RM, Ireland CM (2000) Yanuthones: novel inhibitors from a marine isolate of Aspergillus niger. J Org Chem 65:7195–7200

    CAS  PubMed  Article  Google Scholar 

  • Burton HS (1949) Antibiotics from Penicillia. Br J Exp Pathol 30:151–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butler MJ, Gardiner RB, Day AW (2009) Melanin synthesis by Sclerotinia sclerotiorum. Mycologia 101:296–304

    CAS  PubMed  Article  Google Scholar 

  • Caceres I, Al KA, El Khoury R, Lorber S, Oswald IP, El Khoury A, Atoui A, Puel O, Bailly JD (2020) Aflatoxin biosynthesis and genetic regulation: a review. Toxins 12:150

    CAS  PubMed Central  Article  Google Scholar 

  • Carlton WW, Tuite J, Caldwell R (1973) Penicillium viridicatum toxins and mold nephrosis. J Am Vet Med Assoc 163:1295–1297

    CAS  PubMed  Google Scholar 

  • Carlton WW, Stack ME, Eppley RM (1976) Hepatic alterations produced in mice by xanthomegnin and viomellein, metabolites of Penicillium viridicatum. Toxicol Appl Pharmacol 38:455–459

    CAS  PubMed  Article  Google Scholar 

  • Chabra A, Rahimi-Esboei B, Habibi E, Monadi T, Azadbakht M, Elmi T, Valian HK, Akhbari T, Fakhar M, Naghshvar F (2019) Effects of some natural products from fungal and herbal sources on Giardia lamblia in vivo. Parasitol 146:1188–1198

    CAS  Article  Google Scholar 

  • Chagas FO, Dias LG, Pupo MT (2016) New perylenequinone derivatives from the endophytic fungus Alternaria tenuissima SS77. Tetrahedron Lett 57:3185–3189

    CAS  Article  Google Scholar 

  • Chang J-M, Oyaizu H, Sugiyama J (1991) Phylogenetic relationships among 11 selected species of Aspergillus and selected teleomorph genera estimated from18S ribosomal RNA partial sequences. J Gen Appl Microbiol 37:289–308

    CAS  Article  Google Scholar 

  • Chang P-K, Cary JW, Lebar MD (2020) Biosynthesis of conidial and sclerotial pigments in Aspergillus species. Appl Microbiol Biotechnol 104:2277–2286

    CAS  PubMed  Article  Google Scholar 

  • Chang P-K, Scharfenstein LL, Mack B, Wei Q, Gilbert M, Labar M, Cary JW (2019) Identification of a copper-transporting ATPase involved in the biosynthesis conidial pigments in Aspergillus flavus. Appl Microbiol Biotechnol 103:4889–4897

    CAS  PubMed  Article  Google Scholar 

  • Chao PD, Schiff PL, Slatkin D, Knapp JE (1979) Metabolites as aspergilli. 4. New naphthalenones and 6-ethyl-7-methoxyjuglone from Aspergillus parvulus. J Chem Res Sci 1979:236

    Google Scholar 

  • Chen AJ, Varga J, Frisvad JC, Jiang XZ, Samson RA (2016a) Polyphasic taxonomy of Aspergillus section Cervini. Stud Mycol 85:65–89

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chen AJ, Frisvad JC, Sun BD, Varga J, Kocsubé S, Dijksterhuis J, Kim DH, Hong SB, Houbraken J, Samson RA (2016b) Aspergillus section Nidulantes (formerly Emericella). Polyphasic taxonomy, chemistry and biology. Stud Mycol 84:1–118

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chen AJ, Sun BD, Houbraken J, Frisvad JC, Yilmaz N, Zhou YG, Samson RA (2016c) New Talaromyces species from indoor environments in China. Stud Mycol 84:119–144

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chen AJ, Hubka V, Frisvad JC, Visagie CM, Houbraken J, Meijer M, Varga J, Rasine D, Jurjević Ž, Kubátová A, Sklenář F, Samson RA (2017) Polyphasic taxonomy of Aspergillus section Aspergillus (formerly Eurotium) and its occurrence in indoor environment and food. Stud Mycol 88:37–135

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chen L, Zhang WW, Zheng Q-H, Liu QY, Zheng P, Hu X, Fang ZX, Zhang QQ (2013) Aculeatusquinones A-D, novel metabolites from the marine-derived fungus Aspergillus aculeatus. Heterocycles 87:861–868

    CAS  Article  Google Scholar 

  • Chen M, Shao CL, Kong CJ, She ZG, Wang CY (2014) A new anthraquinone derivative from a gorgonian-derieved fungus Aspergillus sp. Chem Nat Comp 50:67–620

    CAS  Google Scholar 

  • Cheng Z, Xu W, Liu LJ, Li SM, Yaun MJ, Luo ZH, Zhang JJ, Cheng YJ, Li Q (2018) Penigingensins B-E, new farnesylcyclohexanones from the deep sea-derived fungus Penicillium sp YPGA11. Mar Drugs 16:358

    CAS  PubMed Central  Article  Google Scholar 

  • Chiang Y-M, Szewczyk E, Davidson AD, Entwistle R, Keller NP, Wang CCC, Oakley BR (2010) Characterization of the Aspergillus nidulans monodictyphenone gene cluster. Appl Environ Microbiol 76:2067–2074

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Choi HG, Song JH, Park M, Kim S, Kim CE, Kang KS, Shim SH (2020) Neuroprotective gamma-pyrones from Fusarium solani JS-0169: cell-based identification of active compounds and an informatics approach to predict the mechanim of action. Biomolecules 10:91

    CAS  PubMed Central  Article  Google Scholar 

  • Christensen M, Frisvad JC, Tuthill DE (1998) Taxonomy of the Penicillium miczynskii group based on morphology and secondary metabolites. Mycol Res 103:527–541

    Article  Google Scholar 

  • Coleman JJ (2016) The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol Plant Pathol 17:146–158

    PubMed  Article  Google Scholar 

  • Collin G, Höke H, Greim H (2003) Naphthalene and hydronaphthalenes. Ullmann’s Encyclopedia of Industrial Chemistry 23. Wiley-VCH Verlag, Weinheim, pp 661–670

    Google Scholar 

  • Cornforth JW, Ryback G, Robinson PM, Park D (1971) Isolation and characterization of a fungal vacuolation factor (bikaverin). J Chem Soc C 1971:2786–2788

    Article  Google Scholar 

  • Crous PW, Groenewald JZ (2013) A phylogenetic re-evaluation of Arthrinium. IMA Fungus 4:133–154

    PubMed  PubMed Central  Article  Google Scholar 

  • Crous PW, Lombard L, Sandoval-Denis M, Seifert KA, Schroers H-J, Chaverri P, Gené J, Guarro J, Hirooka Y, Bensch K, Kema GHJ, Lamprecht SC, Cai L, Rossman AY, Stadler M, Summerbell RC, Taylor JW, Ploch S, Visagie CM, Yilmaz N, Frisvad JC, Abdel-Azeem AM, Abdollahzadeh J, Abdolrasouli A, Akulov A, Alberts JF, Araújo JPM, Ariyawansa HA, Bakhshi M, Bendiksby M, Amor ABH, Bezerra JDP, Boekhout T, Câmara MPS, Carbia M, Cardinali G, Castañeda-Ruiz RF, Celis A, Chaturvedi V, Collemare J, Croll D, Damm U, Decock CA, Vries RP de, Ezekiel CN, Fan XL, Fernández NB, Gaya E, González CD, Gramaje D, Groenewald JZ, Grube M, Guevara-Suarez M, Gupta VK, Guarnaccia V, Haddaji A, Hagen F, Hansen K, Hashimoto A, Haelewaters D, Hernández-Restrepo M, Houbraken J, Hubk V, Hyde KD, Iturriaga T, Jeewon R, Johnston PR, Jurjević Ž, Karalti İ, Korsten L, Kuramae EE, Kušan I, Labuda R, Lawrence DP, Lee HB, Lechat CLL, Li HY, Litovka YA, Maharachchikumbura SSN, Marin-Felix Y, Kemkuignou BM, Matočec N, McTaggart AR, Mlčoch P, Mugnai L, Nakashima C, Nilsson RH, Noumeur SR, Pavlov IN, Peralta MP, Phillips AJL, Pitt JI, Polizzi G, Quaedvlieg W, Rajeshkumar KC, Restrepo S, Rhaiem A, Robert J, Robert V, Rodrigues AM, Salgado-Salazar C, Samson RA, Santos ACS, Shivas RG, Souza-Motta CM, Sun GY, Swart WJ, Szoke S, Tan YP, Taylor JE, Taylor PWJ, Tiago PV, Váczy KZ, van de Wiele N, van der Merwe NA, Verkley GJM, Vieira WAS, Vizzini A, Weir BS, Wijayawardene NN, Xia JW, Yañez-Morales MJ, Yurkov A, Zamora JC, Zare R, Zhang CL, Thines M (2021) Fusarium: more than a node or a foot-shaped basal cell. Stud Mycol 98:100116

  • Curtin T, Fitzgerald G, Reilly J (1940) Production of phoenicine on synthetic media - 1. Penicillium phoenicum van Beyma – 2 Penicillium rubrum Grassberger Stoll. Biochem J 34:1605–1610

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production, chemical nature and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol 15:813–825

    CAS  Article  Google Scholar 

  • Da Costa Souza PN, Bim Grigoletto TL, Beraldo de Moraes LA, Abreau LM, Guimuraes LHS, Santos C, Galvao LR, Cardoso PG (2016) Production and chemical characterization of pigments in fungi. Microbiology (SGM) 162:12–22

    Article  CAS  Google Scholar 

  • Dalonova AA, Salomova DR, Berestetskii AO (2020) Fungi of genera Alternaria as producers of biologically active compounds and mycoherbicides. Appl Biochem Microbiol 56:256–272

    Article  Google Scholar 

  • Daub ME, Herrero S, Chung K-R (2013) Reactive oxygen species in plant pathogenesis: the role of perylenequinone photosensitizers. Antiox Redox Signal 19:970–989

    CAS  Article  Google Scholar 

  • Hoog GS, Guarro J, Gené J, Ahmed SA, Al-Hatmi AMS, Figueras MJ, Vitale RG (2021) Atlas of clinical fungi, 4th edn. Westerdijk Fungal Biodiversity Instutute, Utrecht

    Google Scholar 

  • Del Valle P, Martínez AL, Figuera M, Raja HA, Mata R (2016) Alkaloids from the fungus Penicillium spathulatum as α-glucosidase inhibitors. Planta Med 82:1289–1294

    Google Scholar 

  • Deshmukh R, Mathew A, Purohit HJ (2014) Characterization of antibacterial activity of bikaverin from Fusarium sp. HKF15. J Biosci Bioeng 117:443–448

    CAS  PubMed  Article  Google Scholar 

  • Diwu ZJ, Lown JW (1994) Photosensitization with anticancer agents 19 – EPR studies of photodynamic action of calphostin C: formation of semiquinones radical and activated oxygen on illumination with visible light. Free Rad Bio Med 16:645–652

    CAS  Article  Google Scholar 

  • Diwu ZJJ, Haugland RP, Liu JX, Lown JW, Miller GG, Moore KB, Brown K, Tulip J, McPhee MS (1996) Photosensitization by anticancer agents 21: New perylene- and aminonaphthoquinones. Free Rad Biol Med 20:589–593

    CAS  PubMed  Article  Google Scholar 

  • Donner CD (2015) Naphthopyranones – isolation, bioactivity, biosynthesis and synthesis. Nat Prod Rep 32:578–604

    CAS  PubMed  Article  Google Scholar 

  • Drewes SE, Khan F, Vuuren SF, Viljoen AM (2005) Simple 1,4-benzoquinones with antibacterial activity from stems and leaves of Gunnera perpensa. Phytochem 66:1812–1816

    CAS  Article  Google Scholar 

  • Du F-Y, Li X-M, Somng J-Y, Li CS, Wang B-G (2014) Anthraquinone derivatives and an orsellinic acid ester from the marine alga-derived endophytic fungus Eurotium cristatum EN-220. Helv Chim Acta 97:973–978

    CAS  Article  Google Scholar 

  • Du L, Zhu T-J, Fang Y-C, Liu H-B, Gu Q-Q, Zhu W-M (2007) Aspergiolide A, a novel anrhtaquinone derivative with naphtho[1,2,3-de]chromene-2,7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus. Tetrahedron 63:1085–1088

    CAS  Article  Google Scholar 

  • Dufossé L, Galaup P, Yaron A, Arad SM (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406

    Article  CAS  Google Scholar 

  • Dufossé L, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Op Biotechnol 26:56–61

    Article  CAS  Google Scholar 

  • Dufossé L (2018) Red colourants from filamentous fungi: are they ready for the food industry? J Food Comp Anal 69:156–161

    Article  CAS  Google Scholar 

  • Durley RC, MacMillan J, Simpson TJ, Glen AT, Turner WB (1975) Fungal products. Part XIII. Xanthomegnin, viomellin, rubrosulphin, and viopurpurin, pigments from Aspergillus sulphureus and Aspergillus melleus. J Chem Soc Perkin Trans 1(1975):163–169

    Article  Google Scholar 

  • Dvorska JE, Surai PF, Speake BK, Sparks NHC (2001) Effect of the mycotoxin aurofusarin on the antioxidant composition and fatty acid profile of quail eggs. Br J Poult Sci 42:643–649

    CAS  Article  Google Scholar 

  • Edwards J, Auer D, de Alwis S-K, Summerell B, Aoki T, Proctor RH, Busman M, O’Donnell K (2016) Fusarium agapanthi sp nov, a novel bikaverin and fusarubin-producing leaf and stem-rot pathogen of Agapanthus praecox (African lily) from Australia and Italy. Mycologia 108:981–992

    CAS  PubMed  Article  Google Scholar 

  • Elbanna AH, Khalil ZG, Bernhardt PV, Capon RJ (2021) Neobulgarones revisited: anti and syn-bianthrones from an Australian mud dauber wasp nest-associated fungus Penicillium sp. CMB-MD22. J Nat Prod 84:762–770

    CAS  PubMed  Article  Google Scholar 

  • Elissawy AM, Ebada SS, Ashour ML, Özkaya FC, Ebrahim W, Singab ANB, Proksch P (2017) Spiroarthrinols A and B, two novel mereterpenoids isolated from the sponge-derived fungus Arthrinium sp. Phytochem Lett 20:246–251

    CAS  Article  Google Scholar 

  • El-Najjar N, Gali-Muhtasib H, Ketola RA, Vuorela P, Urtti A, Vuorela H (2011) The chemical and biological activities of quinones: overview and implications in analytical detection. Phytochem Rev 10:353–370

    CAS  Article  Google Scholar 

  • Fan Y, Keyhani O, Tang GR, Pei Y, Zhang WW, Tong S (2017) Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death. Proc Natl Acad Sci USA 114:E1578–E1586

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fan J, Liao G, Kindunger F, Ludwig-Radtke L, Yin W-B, Li S-M (2019) Peniphenone and penilactone formation in Penicillium crustosum via 1,4-Michael additions of ortho-quinone methide from hydroxyclavatol to γ-butyrolactones from crustosic acid. J Am Chem Soc 141:4225–4229

  • Fang Y, Deng Y, Dehaen W (2020) Tailoring pillararene-based receptors for specific metal ion binding: from recognition to supramolecular assembly. Coord Chem Rev 415:213313

    CAS  Article  Google Scholar 

  • Feng P, Shang Y, Cen K, Wang C (2015) Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci USA 112:11365–11370

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Feng S, Wang W (2020) Bioactivities and structure-activity relationships of natural tetrahydroanthraquinone compounds: a review. Front Pharmacol 11:299

    Article  CAS  Google Scholar 

  • Frandsen RJN, Nielsen NJ, MaolanonSorensen JC, Olsson S, Nielsen J, Giese H (2006) The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol Biol 61:1069–1080

    CAS  Google Scholar 

  • Frandsen RJN, Rasmussen SA, Knudsen PB, Uhlig S, Petersen D, Lysøe E, Gotfredsen CH, Giese H, Larsen TO (2016) Black perithecial pigmentation in Fusarium species is due to accumulation of 5-deoxybostrycoidin-based melanin. Sci Rep 6:26206

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Frandsen RJN, Schutt C, Lund BW, Staerk D, Nielsen J, Olsson S, Giese H (2011) Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum. J Biol Chem 286:10419–10428

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Friedheim EAH (1938) Research of inferior fungi. I. Isolation of the red pigment of Penicillium phoeniceum (phoenicine). Helv Chim Acta 21:1464–1465

    CAS  Article  Google Scholar 

  • Frisvad JC (2015) Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front Microbiol 5:773

    PubMed  PubMed Central  Article  Google Scholar 

  • Frisvad JC (2018) A critical review of producers of small lactone mycotoxins: patulin, penicillic acid and moniliformin. World Mycotox J 11:73–100

    CAS  Article  Google Scholar 

  • Frisvad JC, Filtenborg O (1990) Revision of Penicillium subgenus Furcatum based on secondary metabolites and conventional characters. In: Samson RA, Pitt JI (eds) Modern concepts in Penicillium and Aspergillus classification. Plenum Press, New York, pp 159–170

    Chapter  Google Scholar 

  • Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of the food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–173

    Google Scholar 

  • Frisvad JC, Larsen TO (2015) Chemodiversity in the genus Aspergillus. Appl Microbiol Biotechnol 99:7859–7877

    CAS  PubMed  Article  Google Scholar 

  • Frisvad JC, Larsen TO (2016) Extrolites of Aspergillus fumigatus and other pathogenic species in Aspergillus section Fumigati. Front Microbiol 6:1485

    PubMed  PubMed Central  Article  Google Scholar 

  • Frisvad JC, Filtenborg O, Samson RA, Stolk AC (1990) Chemotaxonomy of the genus Talaromyces. Antonie Van Leeuwenhoek 57:179–189

    CAS  PubMed  Article  Google Scholar 

  • Frisvad JC, Frank JM, Houbraken JAMP, Kuijpers AFA, Samson RA (2004a) New ochratoxin producing species of Aspergillus section Circumdati. Stud Mycol 50:23–43

    Google Scholar 

  • Frisvad JC, Isbrandt T, Larsen TO (2020) Fungal partially reducing polyketides and related natural products from Aspergillus, Penicillium, and Talaromyces. In Comprehensive natural products III: chemistry and biology. Reference Module in Chemistry, Molecular Sciences and Engineering 3rd ed., H-W Liu, T Begley (eds), CH 14731, Elsevier, Amsterdam, pp 313–332.

  • Frisvad JC, Rank C, Nielsen KF, Larsen TO (2009) Metabolomics of Aspergillus fumigatus. Med Mycol 47:S53–S71

    CAS  PubMed  Article  Google Scholar 

  • Frisvad JC, Seifert KA, Samson RA, Mills JT (1994) Penicillium tricolor, a new mold species from Canadian wheat. Can J Bot 72:933–939

    Article  Google Scholar 

  • Frisvad JC, Hubka V, Ezekiel CN, Hong S-B, Nováková A, Chen AJ, Arzanlou M, Larsen TO, Sklenár F, Mahakarnchanakul W, Samson RA, Houbraken J (2019) Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol 93:1–63

    CAS  PubMed  Article  Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004b) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  • Frisvad JC, Larsen TO, Dalsgaard PW, Seifert KA, Louis-Seize G, Lyhne EK, Jarvis BB, Fettinger JC, Overy DP (2006) Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, P. jamesonlandense sp. nov., P. ribium sp. nov., P. soppii and P. lanosum. Int J Syst Evol Microbiol 56:1427–1437

    CAS  PubMed  Article  Google Scholar 

  • Fuertges L, Obermaier L, Thiele W, Foegen S, Müller M (2019) Diversity in fungal intramolecular phenol coupling of polyketides: regioselective laccase-based systems. ChemBioChem 20:1928–1932

    CAS  Article  Google Scholar 

  • Fujimoto H, Nakamura E, Kim Y-P, Okuyama E, Ishibashi M, Sassa T (2001) Immunomodulatory constituents of an ascomycete, Eupenicillium crustaceum, and revised structure of macrophorin D. J Nat Prod 64:1234–1237

    CAS  PubMed  Article  Google Scholar 

  • Fujimoto Y, Yokoyama E, Takahashi T, Uzawa J, Morroka N, Tsunoda H, Tatsuno T (1986) Studies on metabolites of Penicillium diversum var. aureum.1. Chem Pharm Bull 34:1497–1500

    CAS  Article  Google Scholar 

  • Funa N, Funabashi M, Yoshimura E, Horinouchi S (2005) A novel quinone-forming monooxygenase family involved in modification of aromatic polyketides. J Biol Chem 280:14514–14523

    CAS  PubMed  Article  Google Scholar 

  • Fuska J, Proksa B, Fusková A (1975) New potential cytotoxic and antitumor substances. I. In vitro effect of bikaverin and its derivatives on cells of certain tumors. Neoplasma 22:335–338

    CAS  PubMed  Google Scholar 

  • Fuska J, Proksa B, Uhrin D, Marvanova L, Sturdikova H (1991) Biosynthesis of dehydroaltenusin by Talaromyces flavus. Acta Biotechnol 11:73–76

    CAS  Article  Google Scholar 

  • Futuro DO, Ferreira PG, Nicoletti CD, Borba-Santos LP, da Silva FC, Rozental SR, Ferreira VF (2018) The antifungal activity of naphthoquinones: an integrative review. An Acad Bras Ciênc 90:1187–1214

    CAS  PubMed  Article  Google Scholar 

  • Gao S-S, Garcia-Borras M, Barber JS, Hai Y, Duan A, Garg NK, Houk KN, Tang Y (2017) Enzyme catalyzed intramolecular enantioselective hydroalkoxylation. J Am Chem Soc 139:3639–3642

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • García PA, Hernández ÁP, Feliciano AS, Castra MÁ (2018) Bioactive prenyl- and terphenyl-quinones/hydroquinones of marine origins. Mar Drugs 16:292

    PubMed Central  Article  CAS  Google Scholar 

  • Gauthier T, Duarte-Hospital C, Vignard J, Boutet-Robinet E, Sulyok M, Snini SP, Alassane-Kpembi I, Lippi Y, Puel S, Oswald IP, Puel O (2020) Versicolorin A, a precursor in aflatoxins biosynthesis, is a food contaminant toxic for human intestinal cells. Environ Int 137:105568

    CAS  PubMed  Article  Google Scholar 

  • Gautschi JT, Amagata T, Amagata FA, Valeriote SL, Mooberry SI, Crews P (2004) Expanding the strategies in natural product studies of marine-derived fungi: a chemical investigation of Penicillium obtained from deep water sediment. J Nat Prod 67:362–367

    CAS  PubMed  Article  Google Scholar 

  • Gaya E, Fernández-Brime S, Vargas R, Lachlan RF, Gueidang C, Ramírez-Mejía M, Lutzoni F (2015) The adaptive radiation of lichen-forming Teloschistaceae is associated with sunscreening pigments and a bark-to-rock substrate shift. Proc Natl Acad Sci USA 112:11600–11605

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Geib E, Gressler M, Viediernikova I, Hillmann F, Jacobsen ID, Nietzsche S, Hertweck C, Brock M (2016) A non-canonical melanin biosynthesis pathway protects Aspergillus terreus conidia from stress. Cell Chem Biol 23:587–597

    CAS  PubMed  Article  Google Scholar 

  • Geib E, Brock M (2017) Comment on: “Melanisation of Aspergillus terreus – is butyrolactone I involved in the regulation of both DOPA and DHN types of pigments in submerged culture?” Microorganisms 5: 22” Microorganisms 5:34

  • Geib E, Gressler M, Vieiernikova I, Hillman F, Jaconsen ID, Nietzsche S, Hertweck C, Brock M (2019) A non-canonical melanin biosynthesis pathway protects Aspergillus terreus conidia from environmental stress. Cell Chem Biol 23:587–597

    Article  CAS  Google Scholar 

  • Geiser DM, Al-Hatmi AMS, Aoki T, Arie T, Balmas V, Barnes I, Bergstrom GC, Bhattacharyya MK, Blomquist CL, Bowden RL, Brankovics B, Brown DW, Burgess LW, Bushley K, Busman M, Cano-Lira JF, Carrillo JD, Chang H-X, Chen C-Y, Chen W, Chilvers M, Chulze S, Coleman JJ, Cuomo CA, Beer ZW de, Hoog GS de, Castillo-Múnera J Del, Ponte EM Del, Diéguez-Uribeondo J, Pietro A Di, Edel-Hermann V, Elmer WH, Epstein L, Eskalen A, Esposto MC, Everts KL, Fernández-Pavía SP, Silva GF da, Foroud NA, Fourie G, Frandsen RJN, Freeman S, Freitag M, Frenkel O, Fuller KK, Gagkaeva T, Gardiner DM, Glenn AE, Gold SE, Gordon TR, Gregory NF, Gryzenhout M, Guarro J, Gugino BK, Gutierrez S, Hammond-Kosack KE, Harris LJ, Homa M, Hong C-F, Hornok L, Huang J-W, Ilkit M, Jacobs A, Jacobs K, Jiang C, Jiménez-Gasco M del M, Kang S, Kasson MT, Kazan K, Kennell JC, Kim H-S, Kistler HC, Kuldau GA, Kulik T, Kurzai O, Laraba I, Laurence MH, Lee T, Lee Y-W, Lee Y-H, Leslie JF, Liew ECY, Lofton LW, Logrieco AF, López-Berges MS, Luque AG, Lysøe E, Ma L-J, Marra RE, Martin FN, May SR, McCormick SP, McGee C, Meis JF, Migheli Q, Nor NMIM, Monod M, Moretti A, Mostert D, Mulè G, Munaut F, Munkvold GP, Nicholson P, Nucci M, O’Donnell K, Pasquali M, Pfenning LH, Prigitano A, Proctor RH, Ranque S, Rehner SA, Rep M, Rodríguez-Alvarado G, Rose LJ, Roth MG, Ruiz-Roldán C, Saleh AA, Salleh B, Sang H, Scandiani MM, Scauflaire J, III DGS, Short DPG, Šišić A, Smith JA, Smyth CW, Son H, Spahr E, Stajich JE, Steenkamp E, Steinberg C, Subramaniam R, Suga H, Summerell BA, Susca A, Swett CL, Toomajian C, Torres-Cruz TJ, Tortorano AM, Urban M, Vaillancourt LJ, Vallad GE, van der Lee TAJ, Vanderpool D, van Diepeningen AD, Vaughan MM, Venter E, Vermeulen M, Verweij PE, Viljoen A, Waalwijk C, Wallace EC, Walther G, Wang J, Ward TJ, Wickes BL, Wiederhold NP, Wingfield MJ, Wood AKM, Xu J-R, Yang X-B, Yli-Mattila T, Yun S-H, Zakaria L, Zhang H, Zhang N, Zhang SX, Zhang X (2021) Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathology. https://doi.org/10.1094/PHYTO-08-20-0330-LE

  • Graziani S, Pilar P, Daboussi M-J (2004) Bistability and hysteresis of the ‘secteur’ differentiation are controlled by a two-gene locus in Nectria haematococca. BMC Biol 2:18

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Gruber-Dorninger C, Novak B, Nagl V, Berthiller F (2017) Emerging mycotoxins: beyond traditionally determined food contaminants. J Agric Food Chem 65:7052–7070

    CAS  PubMed  Article  Google Scholar 

  • Guntern A, Ioset JR, Queiroz EF, Foggin CM, Hostettmann K (2001) Quinones from Heliotropium ovalifolium. Phytochem 58:631–635

    CAS  Article  Google Scholar 

  • Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Nanoemulsions: formation, properties and applications. Soft Matter 12:2826–2841

    CAS  PubMed  Article  Google Scholar 

  • Gupta M, Majumder UK, Ray MR, Mukhopadhayay DK (1997) Inhibition of experimental murine tumors by MT81, a new mycotoxin from Penicillium nigricans. Neoplasma 44:329–333

    CAS  PubMed  Google Scholar 

  • Gutarowska B, Skora J, Stephien L, Twarucek M, Blajet-Kosicka A, Otlewska A, Grajewski J (2014) Estimation of fungal contamination and mycotoxin production at workplaces in composting plants, archives and libraries. World Mycotox J 7:345–355

    CAS  Article  Google Scholar 

  • Hald B, Christensen DH, Krogh P (1983) On the mycotoxin viomellein in barley and the associated quinone-producing Penicillia. Appl Environ Microbiol 46:1311–1317

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hallas-Møller M, Nielsen KF, Frisvad JC (2018) Secondary metabolite production by cereal-associated penicillia during cultivation on cereal grains. Appl Microbiol Biotechnol 102:8477–8491

    PubMed  Article  CAS  Google Scholar 

  • Hansen FT, Gardiner DM, Lysøe F, Fuertes PR, Tudzynski B, Wiemann P, Sondergaard TE, Giese H, Brodersen DE, Sørensen JL (2015) An update to polyketide synthetases and non-ribosomal synthetase genes and nomenclature in Fusarium. Fung Genet Biol 75:20–29

    CAS  Article  Google Scholar 

  • Harvey, CJB, Tang M, Schlecht U, Horecka J, Fischer CR, Lin HC, Li J, Naughton B, Cherry, J, Miranda M, Li YF, Chu AM, Hennesy JR, Vandova GA, Inglis D, Aiyar RS, Steinmetz LM, Davis RN, Medema RH, Sattely E, Khosla C, St Onge RP, Tang Y, Hillenmeyer ME (2018) HEx a heterologous expression platform for the discovery of fungal natural products. Science Adv 4:eaar5459

  • Hasan HAH (1998) Studies on the toxigenic fungi in roasted foodstuffs (salted seed) and halotolerant activity of emodin-producing Aspergillus wentii. Fol Microbiol 43:383–391

    CAS  Article  Google Scholar 

  • Hawas UW, Atef El-Beih A, El-Halawany AM (2013) Bioactive anthraquinones from the endophytic fungus Aspergillus versicolor isolated from red sea algae. Arch Pharm Res 35:1749–1756. https://doi.org/10.1007/s12272-012-1006x

  • Hayashi A, Fujioka S, Nukina M, Kawano T, Shimada A, Kimura Y (2007) Fumiquinones A and B, nematocidal quinones produed by Aspergillus fumigatus. Biochem Biosci Biotechnol 71:1697–1702

    CAS  Article  Google Scholar 

  • Hawas UW, El-Halawany AM, Ahmed EF (2013) Hepatitis C virus NS3-NS4 protease inhibitors from the endophytic Penicillium chrysogenum isolated from the red algae Liagora viscida. Z Naturforsch C 68:355–366

    CAS  PubMed  Article  Google Scholar 

  • He J, Roemer E, Lange C, Huang X, Maier A, Kelter G, Jiang Y, Xu LH, Menzel KD, Grabley S, Fiebig HH, Jiang CL, Sattler I (2007) Structure, derivatization, and antitumor activity of new griseusins from Nocardiopsis sp. J Med Chem 50:5168–5175

    CAS  PubMed  Article  Google Scholar 

  • He KY, Zhang C, Duan YR, Huang GL, Yang CY, Lu XR, Zheng CJ, Chen GY (2017) New chlorinated xanthone and anthraquinone produced by a mangrove-derived fungus Penicillium citrinum HL-5126. J Antibiot 70:823–827

    CAS  Article  Google Scholar 

  • Heathcote JG, Dutton MF (1969) New metabolites of Aspergillus flavus. Tetrahedron 25:1497–1500

    CAS  Article  Google Scholar 

  • Hejl AM, Einhellig FA, Rasmussen JA (1993) Effects of juglone on growth, photosynthesis and respiration. J Chem Ecol 19:559–568

    CAS  PubMed  Article  Google Scholar 

  • Heo YM, Kim K, Ryun SM, Kwon SL, Park MY, Kang JE, Homg JH, Lim YW, Kim C, Kim BS, Lee D, Kim JJ (2018) Diversity and ecology of marine algicolous Arthrinium species as a source of bioactive natural products. Mar Drugs 16:508

    CAS  PubMed Central  Article  Google Scholar 

  • Hernández VA, Machuca Á, Saavedra I, Chavez D, Astuya A, Barriga C (2019) Talaromyces australis and Penicillium murcianum pigment production in optimized liquid cultures and evaluation of their cytotoxicity in textile applications. World J Microbiol Biotechnol 35:1–9

    Article  CAS  Google Scholar 

  • Hind HG (1940) The constitution of carviolin: a new colouring matter of Penicillium carmino-violaceum Biourge. Biochem J 34:577–579

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Holenstein JE, Kern H, Stoessl A, Stothers JB (1983) The marticins: evidence for a mixed origin from the polyketide and tricarboxylic acid pathway by [2-13C1] and [1,2–13C2]-acetate incorporation experiment. Tetrahedron Lett 24:4059–4061

    CAS  Article  Google Scholar 

  • Holm DK, Petersen LM, Klitgaard A, Knudsen PB, Jarzynska ZD, Nielsen KF, Gotfredsen CH, Larsen TO, Mortensen UH (2014) Molecular and chemical characterization of the biosynthesis of the 6-MSA-derived meroterpenoid yanuthone D in Aspergillus niger. Chem Biol 21:519–529

    CAS  PubMed  Article  Google Scholar 

  • Houbraken J, Due M, Varga J, Meijer M, Frisvad JC, Samson RA (2007) Polyphasic taxonomy of Aspergillus section Usti. Stud Mycol 59:107–128

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Houbraken J, Frisvad JC, Samson RA (2010a) Taxonomy of Penicillium citrinum and related species. Fungal Diversity 44:117–133

    Article  Google Scholar 

  • Houbraken J, Frisvad JC, Samson RA (2010b) Sex in Penicillium series Roqueforti. IMA Fungus 1:171–180

    PubMed  PubMed Central  Article  Google Scholar 

  • Houbraken J, Frisvad JC, Samson RA (2011) Taxonomy of Penicillium section Citrina. Stud Mycol 70:53–138

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Houbraken J, Visagie CM, Meijer M, Frisvad JC, Busby PE, Pitt JI, Seifert KA, Louis-Seize G, Demirel R, Yilmaz N, Jacobs K, Christensen M, Samson RA (2014) A taxonomic and phylogenetic revision of Penicillium section Aspergilloides. Stud Mycol 78:373–451

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Houbraken J, Wang L, Lee HB, Frisvad JC (2016) New sections in Penicillium containing novel species producing patulin, pyripyropens or other bioactive compounds. Persoonia 36:299–314

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Houbraken J, Kocsubé S, Visagie CM, Yilmaz N, Wang X-C, Meijer M, Kraak B, Hubka V, Samson RA, Frisvad JC (2020) Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales), an overview of families, genera, subgenera, sections, series and species. Stud Mycol 95:5–169

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Howard BH, Raistrick H (1954) Studies in the biochemistry of microorganisms. 91. The colouring matters of Penicillium islandicum Sopp. Biochem J 56:56–65

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Huang Z, Nong X, Ren Z, Wang J, Zhang X, Qi S (2017) Anti-HSV-1, antioxidant and antifouling phenolic compounds from the deep-sea-derived fungus Aspergillus versicolor SCSIO 41502. Bioorg Med Chem Lett 27:787–791

    CAS  PubMed  Article  Google Scholar 

  • Hubka V, Nováková A, Kolařik M, Jurjevic Ž, Peterson SW (2015) Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani sect. nov. Mycologia 107:169–208

    PubMed  Article  Google Scholar 

  • Hubka V, Nováková A, Samson RA, Houbraken J, Frisvad JC, Sklenár F, Varga J, Kolařik M (2016a) Aspergillus europaeus sp. nov. a widely distributed soil-borne species related to Aspergillus wentii. Plant Syst Evol 302:641–650

    CAS  Article  Google Scholar 

  • Hubka V, Peterson SW, Frisvad JC, Yaguchi T, Kubátová A, Kolařik M (2013) Aspergillus waksmanii sp. nov. and Aspergillus marvanovae sp. nov., two new closely related species in section Fumigati. Int J Syst Evol Microbiol 63:763–789

    Article  CAS  Google Scholar 

  • Hubka V, Dudová Z, Kubátová A, Yaguchi T, Horie Y, Jurjevic Z, Frisvad JC, Hong S-B, Kolarik M (2017) Taxonomic novelties in Aspergillus section Fumigati: A. tasmanicus sp. nov., induction of a sexual state in A. turcosus and overview of related species. Plant Syst Evol 303:787–806

    CAS  Article  Google Scholar 

  • Hubka V, Nováková A, Jurjević Ž, Sklenar F, Frisvad JC, Houbraken J, Arendrup MC, Jørgensen KM, Siqueira JPZ, Gené J, Kolařik M (2018a) Polyphasic data support the splitting of Aspergillus candidus into two species: proposal of A. dobrogensis sp. nov. Int J Syst Evol Microbiol 68:995–1011

    CAS  PubMed  Article  Google Scholar 

  • Hubka V, Barrs V, Dudová Z, Sklenář F, Kubátová A, Matsuzawa T, Yaguchi T, Horie Y, Nováková A, Frisvad JC, Talbot JJ, Kolařik M (2018b) Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati): opportunistic human and animals pathogens capable of interspecific hydridization. Persoonia 41:142–174

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hubka V, Nováková A, Peterson SW, Frisvad JC, Sklenár F, Matsusawa T, Kubátová A, Kolařík M (2016b) A reappraisal of Aspergillus section Nidulantes with descriptions of two new sterigmatocystin-producing species. Plant Syst Evol 302:1267–1299

    CAS  Article  Google Scholar 

  • Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RG, Aziz MJ (2014) A metal-free organic-inorganic aqueous flow battery. Nature 505:195–198

    CAS  PubMed  Article  Google Scholar 

  • Hussain H, Al-Harrasi A, Green IR, Abbas G, Ahmed I (2015) Recent advances in natural dimeric quinones. Stud Nat Prod Chem 46:447–517

    CAS  Article  Google Scholar 

  • Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Grace Niego AT, Abeywickrama PD, Aluthmuhandiram JVS, Brahamanage RS, Brooks S, Chaiyasen A, Thilini Chethana KW, Chomnunti P, Chepkirui C, Chuankid B, de Silva NI, Doilom M, Faulds C, Gentekaki E, Gopalan V, Kakumyan P, Harishchandra D, Hemachandran H, Hongsanan S, Karunarathna A, Karunarathna SC, Khan S, Kumla J, Jayawardena RS, Liu J-K, Liu N, Luangharn T, Patrick Macabeo AG, Marasinghe DS, Meeks D, Mortimer PE, Mueller P, Nadir S, Nataraja KN, Nontachaiyapoom S, Penkhrue W, Phukhamsakda C, Shaanker Ramanan U, Rathnayaka AR, Sadaba RB, Sandargo B, Samarakoon BC, Tennakoon DS, Siva R, Suwunwong T, Thongbai B, Thongklang N, Wei D, Nuwanthika Wijesinghe S, Winiski J, Yan J, Yasanthika E, Stadler M (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136

    Article  Google Scholar 

  • Ióca LP, Romminger S, Santos MFC, Bandeira KF, Rodrigues FT, Kossuga MH, Nicacio KJ, Ferreira ELF, Morais-Urano RP, Passos MS, Kohn LK, Arns CW, Sette LD, Berlinck RGS (2016) A strategy for the rapid identification of fungal metabolites and the discovery of the antiviral activity of pyrenocine a and harzianopyridone. Quim Nova 39:720–731

    Google Scholar 

  • Ito Y, Kawai K, Nozawa Y (1973) Biochemical studies of pigments from pathogenic fungus Microsporum cookei - effect of 1,4-naphthoquinone pigment, xanthomegnin on oxidative phosphorulation in rat-liver. J Biochem 74:805–810

    CAS  PubMed  Article  Google Scholar 

  • Itoh M, Katayama Y, Kuraishi H, Sugiyama J (1988) Isolation and structure elucidation of a tetrahydrogenated isoprenoid side-chain ubiquinone with ten isoprene units isolated from Chaetomium funicola JS 525. Agric Biol Chem 52:1195–1201

    Google Scholar 

  • Izhaki I (2002) Emodin - a secondary metabolite with multiple ecological functions in higher plants. New Phytol 155:205–217

    CAS  Article  Google Scholar 

  • Janso JE, Bernan VS, Greenstein M (2005) Penicillium dravuni, a new marine-derived species from an alga in Fiji. Mycologia 97:444–453

    CAS  PubMed  Article  Google Scholar 

  • Jensen KA, Ryan ZC, Vanden WA, Cullen D, Hammel KE (2002) An NADH: quinone oxidoreductase active during biodegradation by the brown-rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 68:2699–2703

    CAS  Article  Google Scholar 

  • Johnson BC, Cohen P, Polonsky J, Lederer E (1963) Piloquinone: a new phenanthrene-o-quinone isolated from the mycelium of Streptomyces pilosus. Nature 199:285–286

    CAS  Article  Google Scholar 

  • Jørgensen TR, Park J, Arentshorst M, van Welzen AM, Lamers G, vanKuyk PA, Damveld RA, van den Hondel CAM, Nielsen KF, Frisvad JC, Ram AFJ (2011) The molecular and genetic basis of conidial pigmentation in Aspergillus niger. Fung Genet Biol 48:544–553

    Article  CAS  Google Scholar 

  • Jurjevic Z, Kubatova A, Kolarik M, Hubka V (2015) Taxonomy of Aspergillus section Petersonii sect. nov. encompassing indoor and soil-borne species with predominant tropical distribution. Plant Syst Evol 301:2441–2462

    CAS  Article  Google Scholar 

  • Kaji A, Iwata T, Kiriyama N, Wakusawa S, Miyamoto K (1994) 4 new metabolites of Aspergillus terreus. Chem Pharm Bull 42:1682–1684

    CAS  Article  Google Scholar 

  • Kalansuriya P, Khalil ZG, Salim AA, Capon RJ (2019) Talarophenol sulfate and talarophilones from the Australian mud dauber wasp-associated fungus, Talaromyces sp. CMB-WO45. Tetrahedron Lett 60:151157

    CAS  Article  Google Scholar 

  • Kanai Y, Ishiyama D, Senda H, Iwatani W, Takahashi H, Konno H, Tokumasu S, Kanazawa S (2000) Novel human topoisomerase I inhibitors, topopyrones A, B, C and D. I. Producing strain, fermentation, isolation, physico-chemical properties and biological activity. J Antibiot 53:863–872

    CAS  Article  Google Scholar 

  • Kawai K, Akita T, Nozawa Y (1978) Biochemical studies of pigments from pathogenic fungus Microsporum cookei. 5 Evidence for transmembrane permeability of xanthomegnin across phospholipid bilayer membranes. Experientia 34:977–978

    CAS  PubMed  Article  Google Scholar 

  • Kawai K, Nozawa Y (1979) Biochemical studies of pigments from pathogenic fungus Microsporum cookei 6. Formation of a xanthomegnin-bypass to the mitochondrial electron transport system. Experientia 35:721–722

    CAS  PubMed  Article  Google Scholar 

  • Kawai K, Cowger ML (1981) The interaction of quinone pigment, xanthomegnin, with the mitochondrial respiratory chain. Res Commun Chem Pathol Pharmacol 32:499–514

    CAS  PubMed  Google Scholar 

  • Kehelpannala C, Kumar NS, Jayasinghe L, Araya H, Fujimoto Y (2018) Naphthoquinone metabolites produced by Monacrosporium ambrosium, the ectosymbiont fungus of tea shot-hole borer, Euwallacea fornicahesi in stems of tea, Camellia sinensis. J Chem Ecol 44:95–101

    CAS  PubMed  Article  Google Scholar 

  • Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven fenton reaction. FEBS Lett 446:49–54

    CAS  PubMed  Article  Google Scholar 

  • Khalid S, Keller NP (2021) Chemical signals driving bacterial-fungal interactions. Environ Microbiol 23:1334–1347

    CAS  PubMed  Article  Google Scholar 

  • Khamthong N, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J (2012) Bioactive polyketides from the sea fan-derived fungus Penicillium citrinum PSU-F51. Tetrahedron 68:8245–8250

    CAS  Article  Google Scholar 

  • Kim W, Cavinder B, Proctor RH, O’Donnell K, Townsend JP, Trail F (2019) Comparative genomics and transcriptomics during sexual development gives insight into the life history of the cosmopolitan fungus Fusarium neocosmosporiellum. Front Microbiol 10:1247

    PubMed  PubMed Central  Article  Google Scholar 

  • Kimura Y, Hamasaki T, Nakajima H (1981) Isolation, identification and biological activities of 8-O-methyl javanicin produced by Fusarium solani. Agric Biol Chem 45:2653–2654

    CAS  Google Scholar 

  • Kiriyama N, Nitta K, Sakaguchi Y, Taguchi Y, Yamamoto Y (1977) Studies in metabolic products of Aspergillus terreus. 3. Metabolites of strain IFO 8835. Chem Pharm Bull 25:2593–2601

    CAS  Article  Google Scholar 

  • Kisieliute A, Popov A, Apetrei RM, Cârâc G, Morkvenaite-Vilkonciene I, Ramanaviciene A, Ramanavicius A (2019) Towards microbial biofuel cells: improvement of charge transfer by self-modification of microoganisms with conducting polymer – polypyrrole. Chem Eng J 356:1014–1021

    CAS  Article  Google Scholar 

  • Kjaer D, Kjaer A, Pedersen C, Bulock JD, Smith JR (1971) Bikaverin and norbikaverin, benzoxanthentrione pigments of Gibberella fujikuroi. J Chem Soc C 1971:2792–2797

    Article  Google Scholar 

  • Kjærbølling I, Vesth TC, Frisvad JC, Nybo JL, Theobald S, Kuo A, Bowyer P, Matsuda Y, Mondo S, Lyhne EK, Kogle ME, Clum A, Lipzen A, Salamov A, Ngan CY, Daum C, Chiniquy J, Barry K, LaButti K, Haridas S, Simmons BA, Magnuson JK, Mortensen UH, Larsen TO, Grigoriev IV, Baker SE, Andersen MR (2018) Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species. Proc Natl Acad Sci U S A 115:E753–E761

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Kjærbølling I, Vesth TC, Frisvad JC, Nybo JL, Theobald S, Kildgaard S, Petersen TI, Kuo A, Sato A, Lyhne EK, Kogle ME, Wiebenga A, Kun RS, Lubbers RJM, Mäkäla MR, Barry K, Chovatia M, Clum A, Daum C, Haridas S, He G, LaButti K, Lipzen A, Mondo S, Pangilinan J, Riley R, Salamov A, Simmons BA, Magnuson JK, Henrissat B, Mortensen UH, Larsen TO, de Vries RP, Grigoriev IV, Machida M, Baker SE, Andersen MR (2020) A comparative genomics study of 23 Aspergillus species from section Flavi. Nat Commun 11:1106

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Kocsubé S, Perrone G, Magistà D, Houbraken J, Varga J, Szigeti G, Hubka V, Hong S-B, Frisvad JC, Samson RA (2016) Aspergillus is monophyletic: evidence from multiple gene phylogenies and extrolite profiles. Stud Mycol 85:199–213

    PubMed  PubMed Central  Article  Google Scholar 

  • Kohut G, Olah B, Adam AL, Garcia-Martinez J, Hornok L (2010) Adenyl cyclase regulates heavy metal sensitivity, bikaverin production and plant tissue colonization in Fusarium proliferatum. J Basic Microbiol 50:59–71

    CAS  PubMed  Article  Google Scholar 

  • Kornsakulkarn J, Dolsophan K, Boonyen N, Boonruangprapa T, Rachtawee P, Prabpai S, Kanasaeree P, Thongpanchang C (2011) Dihydronaphthalenones from endophytic fungus Fusarium sp. BCC14842. Tetrahedron 67:7540–7547

    CAS  Article  Google Scholar 

  • Kornsakulkarn J, Saepua S, Srichomthong K, Supothina S, Thongpanchang C (2012) New mycotoxins from the scale insect fungus Aschersonia coffeae Henn. BCC 28712. Tetrahedron 68:8480–8486

    CAS  Article  Google Scholar 

  • Koyama N, Nagahiro T, Yamaguchi Y, Masuma R, Tomoda H, Omura S (2005) Stemphones, novel potentiators of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Aspergillus sp. FKI-2136. J Antibiot 58:695–703

    CAS  Article  Google Scholar 

  • Kracke F, Vassilev I, Krömer JO (2015) Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems. Front Microbiol 6:1–18

    Article  Google Scholar 

  • Kreisel H, Schubert M (1990) Ubiquinone in einigen filamentöse Pilzen. Zentralb Mikrobiol 145:91–94

    CAS  Article  Google Scholar 

  • Kristensen SB, van Mourik T, Pedersen TB, Sørensen JL, Muff J (2020) Simulation of electrochemical properties of natural occurring quinones. Sci Rep 10:13571

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kurasihi H, Katayama-Fujimura Y, Sugiyama J, Yokoyama T (1985) Ubiquinone systems in fungi. I. Distribution of ubiquinones in major families of ascomycetes, basidiomycetes and deuteromycetes, and their taxonomic implications. Trans Mycol Soc Jpn 26:383–395

    Google Scholar 

  • Kuraishi H, Itoh M, Tsuzaki N, Katayama Y, Yokoyama T, Sugiyama J (1990) Ubiquinone systems in fungi. 3. The uniquinone system as a taxonomic aid in Aspergillus and its teleomorphs. In: Samson RA and Pitt JI (eds.). Modern concepts in Penicillium and Aspergillus classification. Nato Advanced Science Institute Series, Series A, Life Sciences 185: 407–421. Plenum Press, New York.

  • Kuraishi H, Aoki M, Itoh M, Katayama Y, Suguyama J, Pitt JI (1991) Distribution of ubiquinones on Penicillium and related genera. Mycol Res 95:705–711

    CAS  Article  Google Scholar 

  • Kuraishi H, Itoh M, Katayama Y, Ito T, Hasegawa A, Sugiyama J (2000) Ubiquinone systems in fungi. V. Distribution and taxonomic implications of ubiquinone in Eurotiales, Onygenales and related plectomycete genera, except for Aspergillus, Paecilomyces, Penicillium, and their related teleomorphs. Antonie Van Leuwenhoek 77:179–186

    CAS  Article  Google Scholar 

  • Kurobane I, Vining LC, Mcinnes AG, Gerber NN (1980) Metabolites of Fusarium solani related to dihydrofusarubin. J Antibiot 33:1376–1379

    CAS  Article  Google Scholar 

  • Kwon HR, Son SW, Han HR, Choi GJ, Jang KS, Choi YH, Lee S, Do Sung N, Kim JC (2007) Nematicidal activity of bikaverin and fusaric acid isolated from Fusarium oxysporum against pine wood nematode, Bursaphelenchus xylophilus. Plant Pathol J 23:318–321

    Article  Google Scholar 

  • Laatsch H, Anke H (1982) Metabolic påroducts of microorganisms. 24. Viocristin, isoviocristin and hydroxyviocristin – structure an dsynthesis of naturally occurring 1.4-anthraquinones. Liebigs Ann Chem 1982:2189–2215

    Article  Google Scholar 

  • Lan S, Wu B (2020) Chemistry and bioactivities of secondary metabolites from the genus Talaromyces. Chem Biodiv 17:e2000229

    CAS  Google Scholar 

  • Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Samson RA, Frisvad JC (2007) Production of mycotoxins by Aspergillus lentulus and other medically important and closely related species in section Fumigati. Med Mycol 45:225–232

    CAS  PubMed  Article  Google Scholar 

  • Lazarro I, Busma N, Battilani P, Butchko RAE (2012) FUM and BIK gene expression contributes to describe fumonisin and bikaverin synthesis in Fusarium verticillioides. Int J Food Microbiol 160:94–98

    Article  CAS  Google Scholar 

  • Lebeau J, Petit T, Clerc P, Dufosse L, Caro Y (2019) Isolation of two new purple naphthoquinone pigments concomitant with the bioactive red bikaverin and derivatives therof produce by Fusarium oxysporum. Biotechnol Prog 35:e2738

    PubMed  Article  CAS  Google Scholar 

  • Lee YM, Li H, Hong J, Cho HY, Bae KS, Kim MA, Kim D-K, Jung JH (2010) Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Arch Pharm Res 33:231–235

    CAS  PubMed  Article  Google Scholar 

  • Li H, Wei J, Pan SY, Gao JM, Tian JM (2014) Antifungal, phytotoxic and toxic metabolites produced by Penicillium purpurogenum. Nat Prod Res 28:2358–2361

    CAS  PubMed  Article  Google Scholar 

  • Li JL, Jiang X, Liu X, He C, Di Y, Lu S, Huang H, Lin B, Wang D, Fan B (2019) Antibacterial anthraquinone dimers from marine derived fungus Aspergillus sp. Fitoterapia 133:1–4

    CAS  PubMed  Article  Google Scholar 

  • Li M-Z, Yu R_L, Bai X-L, Wang H, Zhang X-W (2020) Fusarium: a treasure trove of bioactive secondary metabolites. Nat Prod Rep 37:1568–1588

    CAS  PubMed  Article  Google Scholar 

  • Li Q, Zhy RY, Yi WW, Chai WY, Zhang ZZ, Lian XY (2018) Peniciphenalins A-F from the culture of a marine-associated fungus Penicillium sp ZZX901. Phytochem 152:53–60

    CAS  Article  Google Scholar 

  • Li S, Tang Y, Fang X-M, Qiao T, Han S, Zhu T-H (2020) Whole genome sequencing of Arthrinium phaeospermum, a globally distributed pathogenic fungus. Genomics 112:919–929

    CAS  PubMed  Article  Google Scholar 

  • Li X, Zheng Y, Sattler I, Lin WH (2006) Griseusin C, a novel quinone derivative from a marine-derived Penicillium sp. Arch Pharm Res 29:942–945

    CAS  PubMed  Article  Google Scholar 

  • Li YQ, Li MG, Li W, Zhao JY, Ding ZG, Cui XL, Wen ML (2007) Griseusin D, a new pyranonaphthoquinone derivative from a alkaphilic Nocardiopsis sp. J Antibiot 60:757–761

    CAS  Article  Google Scholar 

  • Li XF, Choi HD, Kang JS, Lee CO, Son BW (2003) New polyoxygenated farnesylcyclohexanones, deacetoxyyanuthone A and its hydro derivative from the marine-derived fungus Penicillium sp. J Nat Prod 66:1499–1500

    CAS  PubMed  Article  Google Scholar 

  • Lim FY, Hoo Y-P, Chen Y-M, Oh J-H, Lee I, Bugni TS, Keller NP (2012) Genome-based cluster reveals an endocrocin biosynthetic pathway in Aspergillus fumigatus. Appl Environ Microbiol 78:4117–4125

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Limón MC, Rodriguez-Ortiz AJ (2010) Bikaverin production and applications. Appl Microbiol Biotechnol 87:21–29

    PubMed  Article  CAS  Google Scholar 

  • Liu FA, Lin X, Zhou X, Chen M, Huang X, Yang B, Tao H (2017) Xanthones and quinolones derivatives produced by the deep-sea-derived fungus Penicillium sp. SCSIO Ind16F01. Molecules 22:10–16

    Google Scholar 

  • Liu W-Z, Gu Q-Q, Zhu W-M, Cui C-B, Fang T (2005) Two new benzoquinone derivatives and two new bisorbicillinoids were isolated from a marine-derived fungus Penicillium terrestre. J Antibiot 58:441–446

    CAS  Article  Google Scholar 

  • Lund F, Frisvad JC (1994) Chemotaxonomy of Penicillium aurantiogriseum and related species. Mycol Res 98:481–492

    Article  Google Scholar 

  • Luo H, Qing Z, Deng Y, Deng Z, Xia’an T, Feng B, Lin W, (2019) Two polyketides produced by endophytic Penicillium citrinum DBBR-9 from medicinal plant Stephania kwangsiensis and their antifungal activity against plant pathogenic fungi. Nat Prod Commun 14:1–6

    Google Scholar 

  • Malz S, Grell MN, Thrane C, Maier FJ, Rosaager P, Felk A, Albertsern KS, Salomon S, Pohn L, Schafer W, Giese H (2005) Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Fung Genet Biol 42:420–433

    CAS  Article  Google Scholar 

  • McNamara L, Dolan SK, Walsh JMD, Stephens JC, Glare TR, Kavanagh K, Griffin CT (2019) Oosporein, an abundant metabolite in Beauveria caledonica, with a feedback induction mechanism and a role in insect virulence. Fungal Biol 123:601–610

    CAS  Article  Google Scholar 

  • Ma SM, Zhan JX, Xie XK, Watanabe KJ, Tang Y, Zhang WJ (2008) Redirection of the cyclization steps of fungal polyketide synthase. J Am Chem Soc 130:38–39

    CAS  PubMed  Article  Google Scholar 

  • Maharjan S, Lee SB, Kim GJ, Cho SJ, Nam JW, Chin J, Choi H (2020) Isolation of unstable isomers of lucilactaene and evaluation of anti-inflammatory activity of secondary metabolites produced by the endophytic fungus Fusarium sp. QF001 from the roots of Scutellaria bicalensis. Molecules 25:923

    CAS  PubMed Central  Article  Google Scholar 

  • Mahmoodian A, Strickings CE (1964) 15 metabolites of Penicillium frequentans Westling. Isolation of sulochrin, asterric acid, (+)-bisdechlorogeodin + 2 new substituted anthraquinones questin and questinol. Biochem J 92:369–378

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Malik EM, Müller CE (2016) Anthraquinones as pharmacological tools and drugs. Med Res Rev 36:705–748

    CAS  PubMed  Article  Google Scholar 

  • Mandelare PE, Adpressa DA, Kaweesa EN, Zakharov LN, Loesgen S (2018) Coculture of two developmental stages of a marine-derived Aspergillus alliaceus results in the production of the cytotoxic bianthrone allianthrone A. J Nat Prod 81:1014–1022

    CAS  PubMed  Article  Google Scholar 

  • Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16:231–238

    CAS  PubMed  Article  Google Scholar 

  • Marcos IS, Conde A, Moro RF, Basabe P, Diez D, Urones JG (2010) Quinone/hydroquinone sesquiterpenes. Mini Rev Org Chem 7:230–254

    CAS  Article  Google Scholar 

  • Martínez-Cano C, Grey WE, Sands DC (1992) 1st report of Arthrinium arundinis causing kernel blight on barley. Plant Dis 76:1077

    Article  Google Scholar 

  • Masi M, Evidente A (2020) Fungal bioactive anthraquinones and analogues. Toxins 12:714

    CAS  PubMed Central  Article  Google Scholar 

  • Matsuda H, Kohno S, Maesaki S, Yamada H, Koga H, Tamuro M, Kuraishi H, Sugiyama J (1992) Application of ubiquinone systems and electrophoretic comparison of enzymes to identification of clinical isolates of Aspergillus fumigatus and several other species of Aspergillus. J Clin Microbiol 30:1999–2005

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mavragani DC, Abdel-Latif FB, McConkey B, Hanel C, Vujanovic V (2007) First report on damping-off of durum wheat caused by Arthrinium sacchari in the semi-arid Saskatchewan fields. Plant Dis 91:469

    CAS  PubMed  Article  Google Scholar 

  • Medentsev AG, Akimenko VK (1997) Effect of secondary metabolites and electron transfer inhibitors on naphthoquinone synthesis in Fusarium decemcellulare. Microbiol (moscow) 66:647–651

    CAS  Google Scholar 

  • Medentsev AG, Akimeno VK (1998) Naphthoquinone metabolites of the fungi. Phytochem 47:935–959

    CAS  Article  Google Scholar 

  • Meng J, Wang X, Xu D, Fu X, Zhang X, Lai D, Zhou L, Zhang G (2016) Sorbicillinoids from fungi and their bioactivities. Molecules 21:715

    PubMed Central  Article  CAS  Google Scholar 

  • Miller RF, Huang S (1995) Isolation and structure of sorrentanone – a new tetrasubstituted quinone from Penicillium chrysogenum. J Antibiot 48:520–521

    CAS  Article  Google Scholar 

  • Mills JT, Frisvad JC, Seifert KA, Abramson D (1995) Identification of nephrotoxic Penicillium species from cereal grains. Mycotox Res 11:25–36

    CAS  Article  Google Scholar 

  • Mocek U, Schlultz L, Buchan T, Balk C, Fretto L, Nzerem J, Sehl L, Sinhu U (1996) Isolation and structure elucidation of five new asterriquinones from Aspergillus, Humicola and Botryotrichum species. J Antibiot 49:854–859

    CAS  Article  Google Scholar 

  • Mondal A, Singh SK, Manna T, Husain SM (2020) Chemoenzymatic, biomimetic total synthesis of (-)-rugulosin B, C and rugulin analogues and their biosynthetic implications. Chem Commun 56:3337–3340

    CAS  Article  Google Scholar 

  • Morehouse NJ, Flewelling AJ, Johnson JA, Gray CA (2020) Halogenated bianthrons from Penicillium roseopurpureum, a fungal endophyte of the marine alga Petalonia fascia. Nat Prod Commun 15:1–4

    Google Scholar 

  • Morishta Y, Okazaki Y, Luo YY, Nurioki J, Taniguchi T, Oshima Y, Asai T (2019) Use of plant hormones to activate silent polyketide biosynthetic pathways in Arthrinium sacchari, a fungus isolated from a spider. Org Biomol Chem 17:780–784

    Article  Google Scholar 

  • Mozaina K, Cantrell CL, Mims AB, Lax AR, Tellez MR, Osbrink WLA (2008) Activity of 1,4-benzoquinones against Formosan subterranean termites (Coptotermes formosanus). J Agric Food Chem 56:4021–4026

    CAS  PubMed  Article  Google Scholar 

  • Munkvold GP (2017) Fusarium species and their associated mycotoxins. In Moretti A, Susca A (eds.). Mycotoxigenic fungi: methods and protocols. Methods in Molecular Biology 1542: 51–106, Amsterdam: Springer

  • Myobatake Y, Takimoto K, Kamisuki S, Inoue N, Takasaki A, Takeuchi T, Mizushima Y, Sugawara T (2014) Cytotoxic alkylated hydroquinone, phenol, and cyclohexanone derivatives from Aspergillus brunneoviolaceus Gasperini. J Nat Prod 77:1236–1240

    CAS  PubMed  Article  Google Scholar 

  • Tsuji N, Kobayashi M, Wakisaka Y, Kawamura Y, Mayama M, Matsumoto K (1975) New antibiotics, griseusins A and B isolation and characterization. J Antibiot 29:7–9

    Article  Google Scholar 

  • Nesic K, Ivanovic S, Nesic V (2014) Fusarial toxins: secondary metabolites of Fusarium fungi. Rev Environ Contam Toxicol 228:101–120

    CAS  PubMed  Google Scholar 

  • Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–97

    CAS  PubMed  Article  Google Scholar 

  • Ngan NTT, Quang TH, Kim KW, Kim HJ, Sohn JK, Kang DG, Lee HS, Kim YC, Oh H (2017) Anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungal strain Penicillium sp. SF-5629. Arch Pharm Res 40:328–337

    PubMed  Article  CAS  Google Scholar 

  • Nicolaisen M, Sandal T, Frisvad JC, Rossen L (1996) 2D-PAGE examination of mRNA populations from mutants of Penicillium freii deficient in the production of xanthomegnin metabolites. Microbiol Res 151:285–290

    CAS  PubMed  Article  Google Scholar 

  • Niehaus MR, Munsterkotter M, Proctor RH, Brown DW, Sharon A, Idan Y, Oren-Young L, Sieber CM, Novak O, Pencik A, Tarkowska D, Hromadova K, Freeman S, Maymon M, Elazar M, Youssef SA, El-Shabrawy EM, Shalaby ABA, Houterman P, Brock NL, Burkhardt I, Tsavkelova EA, Dickschat JS, Galuszka P, Guldener U, Tudzynski B (2016) Comparative ‘omics’ of the Fusarium fujikuroi species complex highlights differences in genetic potential and metabolite synthesis. Genome Biol Evol 8:3574–3599

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Nielsen MR, Sondergaard TE, Giese H, Sørensen JL (2019a) Advances in linking polyketides and non-ribosomal peptides to their biosynthetic gene clusters in Fusarium. Cur Genet 65:1263–1280

    CAS  Article  Google Scholar 

  • Nielsen MR, Holwarth AKR, Brew E, Chrapkova N, Kanik SEK, Kastaniegaard K, Sorensen T, Westphal KR, Wimmer R, Sondergaard TE, Sørensen JL (2019b) A new vector system for targetted integration of genes in the crop pathogen Fusarium solani. Fung Biol Biotechnol 6:26

    Article  Google Scholar 

  • Nohl H, Jordan W, Youngman RJ (1986) Quinones in biology: functions in electron transfer and oxygen activation. Adv Free Rad Biol Med 2:211–279

    CAS  Article  Google Scholar 

  • Nord C, Levenfoss JJ, Bjerketorp J, Sahlberg C, Guss B, Oberg B, Broberg A (2019) Antibacterial isoquinoline alkaloids from the fungal Penicillium spathulatum Em19. Molecules 24:4616

    CAS  PubMed Central  Article  Google Scholar 

  • Nweze JA, Mbaoji FN, Huang G, Li Y, Yang L, Zhang Y, Huang S, Pan L, Yang D (2020) Antibiotics development and the potentials of marine-derived compounds to stem the tide of multidrug-resistant pathogenic bacteria, fungi, and protozoa. Mar Drugs 18:145

    CAS  Article  PubMed Central  Google Scholar 

  • O’Donnell K, Al-Hatmi AMS, Aoki T, Brankovics B, Cano-Lira JF, Coleman JJ, de Hoog GS, Di Pietro A, Frandsen RJN, Geiser DM, Gibas CFC, Guarro J, Kim H-S, Kistler HC, Laraba I, Leslie JF, López-Berges MS, Lysøe E, Meis JF, Monod M, Proctor RH, Rep M, Ruiz-Roldán C, Šišić A, Stajich JE, Steenkamp ET, Summerell BA, van der Lee TAJ, van Diepeningen AD, Verweij PE, Waalwijk C, Ward TJ, Wickes BL, Wiederhold NP, Wingfield MJ, Zhang N, Zhang SX (2020) No to Neocosmospora: phylogenomic and practical reasons for continued inclusion of the Fusarium solani species complex in the genus Fusarium. mSphere 5:00810–20

  • Ogawa H, Yoshimura A, Sugiyama J (1997) Polyphyletic origins of the anamorphic genus Geosmithia and the relationships of the cleistothecial genera: Evidence from 18S, 5S and 28S rDNA sequence analysis. Mycologia 89:756–771

    CAS  Article  Google Scholar 

  • Oplatowska-Stachowiak M, Elliott CT (2017) Food colors: existing and emerging food safety concerns. Crit Rev Food Sci Nutr 57:524–548

    CAS  PubMed  Article  Google Scholar 

  • Osbrink WLA, Tellez MR, Kobaisy M, Lax AR (2005) Assessment of natural products for control of Formosan subterranean termites. In: Petroski RJ, Tellez M, Behle R (eds) Semiochemicals in pest and weed control, 1st edn. American Chemical Society, Washington DC, pp 73–87

    Chapter  Google Scholar 

  • Özkan G, Bilek SE (2014) Microencapsulation of natural food colourants. Int J Nutr Food Sci 3:145–156

    Article  CAS  Google Scholar 

  • Palonen EK, Raina S, Brandt A, Meriluoto J, Kashavar ZT, Soine JT (2017) Melanisation of Aspergillus terreus – is butyrolactone I involved in the regulation of both DOPA and DHN types of pigments in submerged culture? Microorganisms 5:22

    PubMed Central  Article  CAS  Google Scholar 

  • Panesar R, Kaur S, Panesar PS (2015) Production of microbial pigments utilizing agro-industrial waste: a review. Curr Opin Food Sci 1:70–76

    Article  Google Scholar 

  • Pansanit A, Pripdeevech P (2018) Antibacterial secondary metabolites from an endophytic fungus Arthrinium sp. MFLUCC16-1053 isolated from Zingiber cassumunar. Mycol Int J Fung Biol 9:264–272

    CAS  Article  Google Scholar 

  • Paterson RRM, Buddie M (1991) Rapid determination of ubiquinone profiles in Penicillium by reversed phase high performance thin-layer chromatography. Lett Appl Microbiol 13:133–136

    CAS  Article  Google Scholar 

  • Paterson RRM (1993) Effect of growth on taxonomically useful ubiquinone/lipid profiles of Penicillium. Mycol Res 97:173–178

    CAS  Article  Google Scholar 

  • Pavesi C, Flan V, Mann S, Leleu S, Prado S, Franck X (2021) Biosynthesis of azaphilones: a review. Nat Prod Rep 38:1058–1071

    CAS  PubMed  Article  Google Scholar 

  • Pedersen TB, Nielsen MR, Kristensen SB, Spedtsberg EML, Yasmine W, Matthiesen R, Kaniki SEK, Sorensen T, Petersen C, Muff J, Sondergaard TE, Nielsen KL, Wimmer R, Sørensen JL (2020) Heterologous expression of the core genes in the complex fusarubin gene cluster of Fusarium solani. Int J Mol Sci 21:7601

    CAS  PubMed Central  Article  Google Scholar 

  • Pereyra CE, Dantas RF, Ferreira SB, Gomes LP, Silva FP (2019) The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int 19:207

    PubMed  PubMed Central  Article  Google Scholar 

  • Peterson SW, Jurjevics Z, Frisvad JC (2015) Expanding the species and chemical diversity of Penicillium section Cinnamopurpurea. PLoS ONE 10:e0121987

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Perez-Cuesta V, Aparicio-Fernandez L, Guruceaga X, Martin-Souto L, Abad-Diaz-de-Ceria A, Antaran A, Baldain I, Hernandez FL, Ramirez-Garcia A, Rementeria A (2020) Melanin and pyomelanin in Aspergillus fumigatus: from its genetics to host interaction. Int Microbiol 23:55–63

    CAS  PubMed  Article  Google Scholar 

  • Perrone G, Stea G, Epifani F, Varga J, Frisvad JC, Samson RA (2011) Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fung Biol 115:1138–1150

    CAS  Article  Google Scholar 

  • Pfiffner A (1963) Isolierung und Konstitutionenermittlung von Marticin und Isomarticin, zwei neuen Welketoxinen aus Fusarium martii. Dissertation No. 3666, Zürich: ETH

  • Posternak T, Ruelius HW, Tcherniak J (1943) Research on the biochemistry of inferior mushrooms. V. New synthesis of phoenicine and isophoenicine. Helv Chim Acta 26:2031–2044

    CAS  Article  Google Scholar 

  • Proctor RH, Butchko RAF, Brown DW, Moreth A (2007) Functional characterization, sequence comparison and distribution of a polyketide synthase gene required for perithecial pigments of some Fusarium species. Food Addit Contam A 24:1076–1087

    CAS  Article  Google Scholar 

  • Proksa B, Adamcova J, Fuska J (1994) Detection and assay of secondary metabolites of Penicillium vermiculatum Dang. J Chromatogr A 665:185–190

    CAS  Article  Google Scholar 

  • Qian-Cutrone J-F, Gao Q, Huang S, Klohr SE, Veitsch JA, Bristol-Meyers Y-ZS (1994) Arthrinone, a novel fungal metabolite from Arthrinium sp. FA1744. J Nat Prod 57:1656–1660

    CAS  Article  Google Scholar 

  • Rahbæk L, Frisvad JC, Christophersen C (2000) An amendment of Aspergillus section Candidi based on chemotaxonomical evidence. Phytochem 53:581–586

    Article  Google Scholar 

  • Rai MK (1989) Mycosis in man due to Arthrinium phaeospermum var. indicum. First case report. Mycoses 32:472-475

  • Räisänen R (2019) Fungal colorants in applications – focus on Cortinarius species. Color Technol 135:22–31

    Article  CAS  Google Scholar 

  • Raistrick H, Ziffer J (1951) Studies in the biochemistry of microorganisms. 84. The colouring matters of Penicillium nalgiovense Laxa. 1. Nalgiovensin and nalgiolaxin – isolation, derivatives and partial structure. Biochem J 49:563–574

    Article  Google Scholar 

  • Rajendran M (2016) Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods. Photodiagnosis Photodyn Ther 13:175–187

    CAS  PubMed  Article  Google Scholar 

  • Ranji PKV, Wieyarathe S, Chandrani S, Jayawardana KH, Gunakerata GMKB (2013) Citriquinones A and B, new benzoquinones from Penicillium citrinum. Nat Prod Commun 8:1431–1434

    CAS  PubMed  Google Scholar 

  • Reilly J, Curtin T, Fitzgerald G (1940) Production of phoenicine on synthetic media. Biochem J 34:1605–1610

    PubMed  PubMed Central  Article  Google Scholar 

  • Raper KB, Fennell DI (1965) The genus Aspergillus. Williams & Wilkins, Baltimore.

  • Roberts JC, Thompson DJ (1971) Studies in mycological chemistry 27. Reinvestigation of purpurogenone, metabolite of Penicilium purpurogenum Stoll. J Chem Soc C 1971:3488–3492

    Article  Google Scholar 

  • Roos A (1977) Physiology and pathogenicity of Neocosmospora vasinfecta EF Smith. PhD thesis, ETH Zurich, Switzerland.

  • Samson RA, Visagie CM, Houbraken J, Hong S-B, Hubka V, Klaassen CHW, Perrone G, Seifert KA, Susca A, Tanney JB, Varga J, Kocsubé S, Szigeti G, Yaguchi T, Frisvad JC (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Samson RA, Houbraken JAMP, Kuijpers AFA, Frank JM, Frisvad JC (2004) New ochratoxin or sclerotium producing species in Aspergillus section Nigri. Stud Mycol 50:45–61

    Google Scholar 

  • Samson RA, Noonim P, Meijer M, Houbraken J, Frisvad JC, Varga J (2007a) Diagnostic tools to identify black Aspergilli. Stud Mycol 59:129–145

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Samson RA, Hong S-B, Peterson SW, Frisvad JC, Varga J (2007b) Polyphasic taxonomy of Aspergillus section Fumigati and its teleomorph Neosartorya. Stud Mycol 59:147–203

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Samson RA, Peterson SW, Frisvad JC, Varga J (2011a) New species in Aspergillus section Terrei. Stud Mycol 69:39–55

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Samson RA, Stolk AC, Frisvad JC (1989) Two new synnematous species of Penicillium. Stud Mycol 31:133–0143

    Google Scholar 

  • Samson RA, Varga J, Meijer M, Frisvad JC (2011b) New species in Aspergillus section Usti. Stud Mycol 69:81–97

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Samson RA, Yilmaz N, Houbraken J, Spierenburg H, Seifert KA, Peterson SW, Varga J, Frisvad JC (2011c) Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud Mycol 70:159–184

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sapmak A, Boyce KJ, Andrianopoulos A, Vanittanakom N (2015) The pbrB gene encodes a laccase required for DHN-melanin synthesis in conidia of Talaromyces (Penicillium) marneffei. PLoS ONE 10:e0122728

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Sasaki K, Abe H, Yoshizaki F (2002) In vitro antifungal activity of naphthoquinone derivatives. Biol Pharm Bull 25:669–670

    CAS  PubMed  Article  Google Scholar 

  • Scudamore KA, Atkin PM, Buckle AE (1986) Natural occiúrrence of the naphthoquinone mycotoxins, xanthomegnin and viomellein and vioxanthin in cereals and animal feedstuffs. J Stored Prod Res 22:81–84

    CAS  Article  Google Scholar 

  • Sedmera P, Podojil M, Vokoun J, Betina V, Memec P (1978) 2,2’-dimethoxy-4a,4a’-dehydrorugulosin (rugulin), a minor metabolite from Penicillium rugulosum. Folia Micribiol 23:64–67

    CAS  Article  Google Scholar 

  • Segaran G, Sathiavelu M (2019) Fungal endophytes: a potent biocontrol agent and a bioactive metabolites reservoir. Biocatal Agric Biotechnol 21:101284

    Article  Google Scholar 

  • Seifert KA, Hoekstra ES, Frisvad JC, Saosno RA (2004) Penicillium cecidicola, a new species on cynipid insect galls on Quercus pacifica in the western United States. Stud Mycol 50:517–523

    Google Scholar 

  • Sen T, Barrow CJ, Deshmukh SK (2019) Microbial pigments in the food industry - challenges and the way forward. Front Nutr 6:1–14

    Article  CAS  Google Scholar 

  • Shang Z, Khalil Z, Li L, Salim AA, Quezada M, Kalansuriya P, Capon RJ (2016) Roseopurpurins: chemical diversity enhanced by convergent biosynthesis and forward and reverse Michael additions. Org Lett 18:4340–4343

    CAS  PubMed  Article  Google Scholar 

  • Sharma R, Kulkarni G, Sonawane MS, Shouche (2014) A new endophytic species of Arthrinium (Apiosporaceae) from Jatropha podagrica. Mycoscience 55:118–123

    Article  Google Scholar 

  • Sheehan JC, Lawson WB, Gaul RJ (1958) The structure of terreic acid. J Am Chem Soc 80:5536–5538

    CAS  Article  Google Scholar 

  • Shibata S, Sankawa U, Taguchi H, Yamazaki K (1966) Biosynthesis of natural products. 3. Biosynthesis of erythroskyrine, a coloring matter of Penicillium islandicum Sopp. Chem Pharm Bull 14:474–478

    CAS  Article  Google Scholar 

  • Short DPG, O’Donnell K, Thrane U, Nielsen KF, Zhang N, Juba JH, Geiser DM (2013) Phylogenetic relationships among members of the Fusarium solani species complex in human infections and the description of F. keratinophilum and F. petrofilum. stat. nov. Fung Genet Biol 53:59–70

    Article  Google Scholar 

  • Silva LPG, Pereira AMPT, Pena A, Lino CM (2021) Citrinin in foods and supplements: a review of occurrence and analytical methodologies. Foods 10:14

    CAS  Article  Google Scholar 

  • Singh PD, Johnson JH, Aklonis CA, Bush K, Fisher SM, O’Sullivan J (1985) Two new inhibitors of phospholipase A2 produced by Penicillium chermesinum, taxonomy, fermentation, isolation, structure determination and biological properties. J Antibiot (tokyo) 38:706–712

    CAS  Article  Google Scholar 

  • Singh SB, Cordingley MG, Ball RG, Smith JL, Dombrowski AW, Goetz MA (1991) Structure and stereochemistry of thysanone: a novel human Rhinovirus 3C-protease inhibitor of Thysanophora penicilloides. Tetrahedron Lett 32:5279–5282

    CAS  Article  Google Scholar 

  • Singh SB, Zink DI, Guan Z, Collado J, Palaez F, Felock PJ, Hazuda DJ (2003) Isolation, structure, and HIV-1 integrase inhibitor activity of xanthoviridicatin E and F, two novel fungal metabolites produced by Penicillium chrysogenum. Helv Chim Acta 86:3380–3385

    CAS  Article  Google Scholar 

  • Sklenář F, Jurjević Ž, Zalar P, Frisvad JC, Visagie C, Kolařík M, Houbraken J, Chen AJ, Yilmaz N, Seifert KA, Coton M, Deniel F, Gunde-Cimerman N, Samson RA, Peterson SW, Hubka V (2017) Phylogeny of xerophilic aspergilli (subgenus Aspergillus) and taxonomic revision of section Restricti. Stud Mycol 88:161–236

    PubMed  PubMed Central  Article  Google Scholar 

  • Smetanina OF, Yurchenko AN, Ivanets EV, Kirichuk NN, Khudyakova YV, Yurchenko EA, Afiyatullov SS (2016) Metabolites of the marine fungus Penicillium citrinum associated with a brown alga Podina sp. Chem Nat Comp 52:111–112

    CAS  Article  Google Scholar 

  • Solhaug KA, Gauslaa Y (2004) Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina. Plant, Cell Environ 27:167–176

    CAS  Article  Google Scholar 

  • Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2003) UV-induction of sun-screening pigments in lichens. New Phytol 158:91–100

    CAS  Article  Google Scholar 

  • Sondergaard TE, Fredborg M, Christensen AMO, Damsgaard SK, Kramer NF, Giese H, Sørensen JL (2016) Fast screening of antibacterial compounds from Fusaria. Toxins 8:355

    PubMed Central  Article  CAS  Google Scholar 

  • Sørensen JL, Nielsen KF, Sondergaard TE (2012) Redirection of pigment biosynthesis to isocoumarins in Fusarium. Fung Genet Biol 49:413–418

    Article  CAS  Google Scholar 

  • Spraker JE, Wiemann P, Baccile JA, Venkatesh N, Schumacher J, Schroeder FC, Sanchez LM, Keller NP (2018) Conserved responses in a war of small molecules between a plant-pathogenic bacterium and fungi. Mbio 9:e00820

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Srinivas G, Babykutty S, Sathiadevan PP, Srinivas P (2007) Molecular mechanism of emodin action: transition from laxative ingredient to an antitumor agent. Med Res Rev 27:591–608

    CAS  PubMed  Article  Google Scholar 

  • Stack ME, Mislivec PB (1978) Production of xanthomegnin and viomellein by isolates of Aspergillus ochraceus, Penicillum cyclopium, and Penicillium viridicatum. Appl Environ Microbiol 36:552–554

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Stack ME, Eppley RM, Dreifuss PA, Pohland AE (1977) Isolation and identification of xanthomegnin, viomellein, rubrosulphin, and viopurpurin as metabolites of Penicillium viridicatum. Appl Environ Microbiol 33:351–355

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Stack ME, Mazzola ES, Eppley RM (1979) Structures of xanthoviridicatin D and xanthoviridicatin G, metabolites of Penicillium viridicatum: application of proton and carbon-13 NMR spectroscopy. Tetrahedron Lett 20:4989–4992

    Article  Google Scholar 

  • Steenwyk JL, Shen X-X, Lind AL, Goldman GH, Rokas A (2019) A robust phylogenetic time tree for biotechnologically and medically important fungi in the genera Aspergillus and Penicillium. Mbio 10:e00925-e1019

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Steenwyk JL, Mead ME, Knowles S, Raja H, Roberts CD, Bader O, Houbraken J, Goldman GH, Oberlies NH, Rokas A (2020) Variation among biosynthetic gene clusters, secondary metabolite profiles and cards of virulence across Aspergillus species. Genetics 216:481–498

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Steyn PS, Vleggaar R (1974) Austocystins - 6 novel dihydro furo[3’,2’-4,5]furo(3,2-b]xanthenones from Aspergillus ustus. J Chem Soc Perkin Trans I 1974:2250–2256

    Article  Google Scholar 

  • Studt L, Wiemann PK, Kleingrewe K, Humpf H, Tudzynski B (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl Environ Microbiol 78:4468–4480

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sugiyama J, Itoh M, Katayama Y, Yamaoka Y, Ando K, Kakishima M, Kuraishi H (1988) Ubiquinones in fungi. II. Distribution of ubiquinones in smut and rust fungi. Mycologia 80:115–120

    CAS  Article  Google Scholar 

  • Sun B-C, Chen AJ, Houbraken J, Frisvad JC, Wu W-P, Wei H-L, Zhou Y-G, Jiang X-Z, Samson RA (2020a) New section and species in Talaromyces. MycoKeys 68:75–113

    PubMed  PubMed Central  Article  Google Scholar 

  • Sun BD, Houbraken J, Frisvad JC, Jiang XZ, Chen AJ, Samson RA (2020b) New species in Aspergillus section Usti and an overview of Aspergillus section Cavernicolarum. Int J Syst Evol Microbiol 70:5401–5416

    PubMed  Article  CAS  Google Scholar 

  • Sun Y-L, Zhang X-Y, Zhang Z-H, Xu X-Y, Qi S-H (2013) Three new polyketides from marine-derived fungus Penicillium citrinum SCSGAFO167. Nat Prod Res 28:239–244

    PubMed  Article  CAS  Google Scholar 

  • Sunasse SN, Davies-Coleman MT (2018) Cytotoxic and antioxidant marine prenylated quinones and hydroquinones. Nat Prod Rep 29:513–535

    Article  CAS  Google Scholar 

  • Suwannarach N, Kumla J, Nishizaki Y, Sugimoto N, Meerak J, Matsui K, Lumyong S (2019) Optimization and characterization of red pigment production from an endophytic fungus, Nigrospora aurantiaca CMU-ZY2045, and its potential source of natural dye for use in textile dyeing. Appl Microbiol Biotechnol 103:6973–6987

    CAS  PubMed  Article  Google Scholar 

  • Suzuku Y, Kono Y, Inoue T, Sakurai A (1998) A potent antifungal benzoquinone in etiolated sorghum seedlings and its metabolites. Phytochem 47:997–1001

    Article  Google Scholar 

  • Tadpetch K, Chukong C, Jeanmard L, Thirapon A, Rukachaisirikul V, Phongpaichit S, Sakayaroj J (2015) Cytotoxic naphthoquinones and new succininate esters from the soil fungus Fusarium solani PSU-RSPG227. Phytochem Lett 11:106–110

    CAS  Article  Google Scholar 

  • Talbot JJ, Houbraken J, Frisvad JC, Samson RA, Kidd SWE, Pitt J, Lindsay S, Beatty JA, Barrs VR (2017) Discovery of Aspergillus frankstonensis sp. nov. during environmental sampling for pathogens. PLoS ONE 12:e0181660

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Takeda N, Seo S, Ogihara Y, Sankawa U, Iitaka I, Kitagawa I, Shibata S (1973) Studies of fungal metabolites. 31. Anthraquinone coloring matters of Penicillium islandicum Sopp, and some other fungi. Tetrahedron 29:3703–3719

    CAS  Article  Google Scholar 

  • Takemoto K, Kamisuki S, Chio PT, Kuriyama I, Mizushina Y, Sugawara F (2014) Bioactive dihydronaphthoquinone derivatives from Fusarium solani. J Nat Prod 77:1992–1996

    CAS  PubMed  Article  Google Scholar 

  • Tanney JB, Visagie CM, Yilmaz N, Seifert KA (2017) Aspergillus subgenus Polypaecilum from the built environment. Stud Mycol 88:237–267

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tansuwan S, Pornpakakul S, Roengsumran S, Petsom A, Muangsin N, Sihanonta P, Chaichit N (2007) Antimalarial benzoquinones from an endophytic fungus, Xylaria sp. J Nat Prod 70:1620–1623

    CAS  PubMed  Article  Google Scholar 

  • Theobald S, Vesth T, Rendsvig JK, Nielsen KF, Riley R, Magalhaes de Abreau L, Salamov A, Frisvad JC, Larsen TO, Andersen MR, Hoof JB (2018) Uncovering secondary metabolite evolution and biosynthesis using gene cluster networks and genetic dereplication. Sci Rep 8:17957

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Thomson RH (1971) Naturally occurring quinones. Academic Press, London

    Google Scholar 

  • Thomson RH (1997) Naturally occurring quinones IV. Recent Advances. Springer Science, London

    Google Scholar 

  • Tikhonova TV, Popov VO (2014) Structural and functional studies of multiheme cytochromes C involved in extracellular electron transport in bacterial dissimilatory metal reduction. Biochem 79:1584–1601

    CAS  Google Scholar 

  • Trivedi AB, Hirota M, Doi E, Kitabatake N (1993) Formation of a new toxic compound, citrinin H1, from citrinin on mild heating in water. J Chem Soc Perkin Trans I 1993:2167–2171

  • Tsukuda M, Fukai M, Miki K, Shiraishi T, Suzuki T, Kazuto N, Sugita T, Ishino M, Kinoshita K, Takahashi K, Shiro M, Koyama K (2011) Chemical constituents of a marine fungus, Arthrinium sacchari. J Nat Prod 74:1645–1649

    Article  CAS  Google Scholar 

  • Turner WB (1971) Fungal Metabolites. Academic Press, London

    Google Scholar 

  • Turner WB, Aldridge DC (1983) Fungal metabolites II. Academic Press, London

    Google Scholar 

  • Uchiyama M, Kimura Y, Ohta A (2000) Stereoselective total synthesis of (±)-arthrinone and related natural compounds. Tetrahedron Lett 41:10013–10017

    CAS  Article  Google Scholar 

  • Uchimiya M, Stone AT (2009) Reversible redox chemistry of quinones: impact on biogeochemical cycles. Chemosphere 77:451–458

    CAS  PubMed  Article  Google Scholar 

  • van der Beek CP, Roels JA (1984) Penicillin production: biotechnology at its best. Antonie Van Leeuwenhoek 50:625–639

    PubMed  Article  Google Scholar 

  • Van Eijk GW (1973) Anthraquinones in the fungus Talaromyces stipitatus. Experientia 29:522–523

    PubMed  Article  Google Scholar 

  • Van Eijk GW (1975) Bostrycin, a tetrahydroanthraquinone pigment and some other metabolites from the fungus Arthrinium phaeospermum. Experientia 31:783–784

    Article  Google Scholar 

  • Van Gorkom BAP, de Vries EGE, Karrenbeld A, Kleibucker JH (1999) Review article: anthranoid laxatives and their potential carcinogenic effects. Aliment Pharmacol Ther 13:443–452

    PubMed  Article  Google Scholar 

  • Van Reenen-Hoekstra ES, Frisvad JC, Samson RA, Stolk AC (1990) The Penicillium funiculosum complex - well defined species and problematic taxa. In: Samson RA, Pitt JI (eds) Modern concepts in Penicillium and Aspergillus classification. Plenum Press, New York, pp 173–191

    Chapter  Google Scholar 

  • Varga J, Due M, Frisvad JC, Samson RA (2007a) Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud Mycol 59:89–106

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Varga J, Frisvad JC, Samson RA (2007b) Polyphasic taxonomy of Aspergillus section Candidi based on molecular, morphological and physiological data. Stud Mycol 59:75–88

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Varga J, Frisvad JC, Samson RA (2010) Aspergillus sect. Aenei sect. nov., a new section of the genus for A. karnatakaensis sp. nov. and some allied fungi. IMA Fung 1:197–205

    Article  Google Scholar 

  • Varga J, Frisvad JC, Samson RA (2011a) Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud Mycol 69:57–80

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Varga J, Frisvad JC, Kocsubé S, Brankovics B, Tóth B, Szigeti G, Samson RA (2011b) New and revisited species in Aspergillus section Nigri. Stud Mycol 69:1–17

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Vesth TC, Nybo JL, Theobald S, Frisvad JC, Larsen TO, Nielsen KF, Hoof JB, Brandl J, Salamov A, Ryley R, Gladden JM, Phatale P, Nielsen MT, Lyhne EK, Kogle ME, Strasser K, McDonald E, Berrey K, Clun A, Chen C, Nolan M, Sandor L, Kuo A, Lipzen A, Hainaut M, Drula E, Tsang A, Magnuson JK, Henrissat B, Wiebenga A, Simmons BA, Mäkelä MR, de Vries RP, Grigoriev IV, Mortensen UH, Baker SE, Andersen MR (2018) Investigation on inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nat Genet 50:1688–1695

    CAS  PubMed  Article  Google Scholar 

  • Vogel A (2000) Anthraquinones. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim, pp 503–511

    Google Scholar 

  • Visagie CM, Renaud JB, Burgess KMN, Malloch DW, Clark D, Ketch L, Urb M, Louiz-Sieze G, Assabgui R, Sumarah MW, Seifert KA (2016) Fifteen new species of Penicillium. Persoonia 36:247–270

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Visagie CM, Houbraken J, Frisvad JC, Hong S-B, Klaassen CHW, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA (2014a) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Visagie CM, Frisvad JC, Visagie A, Houbraken J, Seifert KA, Samson RA, Jacobs K (2021) A re-evaluation of Penicillium section Canescentia, including the description of five new Penicillium species isolated from South Africa and a phylogenetic. Persoonia 46:163–187

    Google Scholar 

  • Visagie CM, Houbraken J (2020) Updating the taxonomy of Aspergillus in South Africa. Stud Mycol 95:252–292

    Article  Google Scholar 

  • Visagie CM, Varga J, Houbraken J, Meijer M, Kocsubé S, Yilmaz N, Fotedar R, Seifert KA, Frisvad JC, Samson RA (2014b) Ochratoxin production and taxonomy of the yellow aspergilli (Aspergillus section Circumdati). Stud Mycol 78:1–61

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Vyvyan JR (2002) Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58:1631–1646

    CAS  Article  Google Scholar 

  • Wang W-L, Zhu T-J, Tao H-W, Lu Z-Y, Fang Y-C, Gu Q-Q, Zhu W-M (2007) Two new quinone type compounds from the halotolerantr fungus Aspergillus variecolor. J Antibiot 60:603–607

    CAS  Article  Google Scholar 

  • Wang H, Wang Y, Wang W, Fu P, Liu P, Zhu W (2011) Anti-influenze virus polyketides from the acid-tolerant fungus Penicillium purpurogenum JS03-21. J Nat Prod 74:2014–2108

    CAS  PubMed  Article  Google Scholar 

  • Wang PL, Li DY, Xie LR, Wu X, Hua HM, Li ZL (2014) Two new compounds from a marine-derived fungus Penicillium oxalicum. Nat Prod Res 28:290–293

    CAS  PubMed  Article  Google Scholar 

  • Wang W, Liao Y, Tang C, Huang X, Luo Z, Chen J, Cai P (2017) Cytotoxic and antibacterial compounds from the coral-derived fungus Aspergillus tritici SP2-8-1. Mar Drugs 15:1–10

    Google Scholar 

  • Wang S-S, Cui H, Ye J, Wu J, Wang S-X, Yin W-B (2018) Identification and detection of rubrofusarin, rubrofusarin isomer and their quinone forms in grains using high resolution mass spectrometry. ACS Omega 3:15924–15932

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wang W, Liao Y, Zhang B, Gao M, Ke W, Li F, Shao Z (2019) Citrinin monomer and dimer derivatives with antibacterial and cytotoxic activities isolated from the deep sea-derived fungus Penicillium citrinum NLG-S01-P1. Mar Drugs 17:46

    CAS  PubMed Central  Article  Google Scholar 

  • Watanabe A, Ono Y, Fujii I, Sankawa U, Mayorga ME, Timberlake WE, Ebizuka Y (1998) Product identification of polyketide synthase coded by Aspergillus nidulans wA gene. Tetrahedron Lett 39:7733–7736

    CAS  Article  Google Scholar 

  • Wei R, Li F, Song R, Qin S (2009) Comparison of two marine-sponge-associated Penicillium strains DQ25 and SC10: differences in secondary metabolites and their bioactivities. Ann Microbiol 59:579–585

    CAS  Article  Google Scholar 

  • Wei J, Wu B (2020) Chemistry and bioactivities of secondary metabolites from the genus Fusarium. Fitoterapia 146:104638

    CAS  PubMed  Article  Google Scholar 

  • Wells JM, Cole RJ, Kirksey JW (1975) Emodin, a toxic metabolite of Aspergillus wentii isolated from weevil damaged chestnuts. Appl Microbiol 30:26–28

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wessels P, Gohrt A, Zeeck A, Drautz H, Zahner H (1991) Metabolic products of microorganisms. 260. Naphthgeranines, new naphtho-quinone antibiotics from Streptomyces sp. J Antibiot 44:1013–1018

    CAS  Article  Google Scholar 

  • Wheeler MH, Stipanovic RD (1985) Melanin biosynthesis and the metabolism of flaviolin and 2-hydroxyjuglone in Wangiella dermatitidis. Arch Microbiol 142:234–241

    CAS  PubMed  Article  Google Scholar 

  • Wheeler MH, Klich MA (1995) The effect of tricyclazole, pyroquilone, phthalide, and related fungicides on the production of conidial wall pigments by Penicillium and Aspergillus species. Pesticide Biochem Physiol 52:125–136

    CAS  Article  Google Scholar 

  • Wheeler MH, Hocking AD (1995) The effect of tricyclazole, pyroquilone, phthalide, and related fungicides on the production of conidial wall pigments. Pest Biochem Physiol 52:125–136

    CAS  Article  Google Scholar 

  • Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf HU, Tusdzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946

    CAS  PubMed  Article  Google Scholar 

  • Williams K, Greco C, Bailey AM, Willis CL (2021) Core steps to th azaphilone family of fungal natural products. ChemBioChem 22 https://doi.org/10.1002/cbic.202100240

  • Wu H, Lao X-F, Wang Q-W, Lu R-R, Shen C, Zhang F, Liu M, Jia L (1989) The Shiriachromes: Novel fungal perylenequinoine pigments from Shiraia bambusicola. J Nat Prod 52:948–951

    CAS  Article  Google Scholar 

  • Wu Z, Wang Y, Liu D, Proksch P, Yu S, Lin W (2016) Antioxidative phenolic compounds from a marine-derived fungus Aspergillus versicolor. Tetrahedron 72:50–57

    CAS  Article  Google Scholar 

  • Xu D, Xue M, Shen X, Jia X, Hou X, Lai D, Zhou L (2021) Phytotoxic secondary metabolites from fungi. Toxins 13:261

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Xu Y, Vinas M, Alsarrag A, Su L, Pfohl K, Rohlfs M, Schafer W, Chen W, Karlovsky P (2019) Bis-naphthopyrone pigments protect filamentous ascomycetes from a wide range of predators. Nat Commun 10:3579

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Yamamoto Y, Hirai T, Okada K, Saito K (1974) Studies on the metabolic products of a strain of Aspergillus fumigatus DH413. 6. Metabolic position of 3,4-dihydroxytoluquinone and fumigatin chlorohydrin in fumigatin biosynthesis. Chem Pharm Bull 22:83–87

    CAS  Article  Google Scholar 

  • Yamamoto Y, Kiryama N, Arahatas S (1968) Studies on products of Aspergillus fumigatus (J-4). Chemical structure of metabolic products. Chem Pharm Bull 16:304–310

    CAS  Article  Google Scholar 

  • Yamamoto Y, Kiriyama N, Shimizu S, Koshimura S (1976) Antitumor activity of asterriquinone – metabolic product of Aspergillus terreus. Gann 67: 623–624

  • Yamazaki H, Koyama N, Ōmura S, Tomoda H (2010a) New rugulosins, anti-MSRA antibiotics, produced by Penicillium radicum. Org Lett 12:1572–1575

    CAS  PubMed  Article  Google Scholar 

  • Yamazaki H, Nonaka H, Masuma R, Ōmura S, Tomoda H (2009) Xanthoradones, new potentiators of imipenem activity against methicillin-resistant Stahylococcus aureus, produced by Penicillium radicum FKI-3765-2: I. Taxonomy, fermentation, isolation and biological properties. J Antibiot 62:431–434

    CAS  Article  Google Scholar 

  • Yamazaki H, Ōmura S, Tomoda H (2010b) Xanthoradone C, a new potentiator of imipenem activity against methicillin-resistant Stahylococcus aureus, produced by Penicillium radicum FKI-3765-2: I. Taxonomy, fermentation, isolation and biological properties. J Antibiot 63:329–330

    CAS  Article  Google Scholar 

  • Yang LK, Khoo-Beattie C, Goh KL, Chng BL, Yoganathan K, Lai YH, Butler MS (2001) Ardisiaquinones from Ardisia teysmanniana. Phytochemistry 58:1235–1238

    CAS  PubMed  Article  Google Scholar 

  • Yang SQ, Li XM, Xu GM, Li X, An CY, Wang BG (2018) Antibacterial anthraquinone derivatives isolated from a mangrove-derived endophytic fungus Aspergillus nidulans by ethanol stress strategy. J Antibiot 71:778–784

    CAS  Article  Google Scholar 

  • Yang Y, Yan Y-M, Wei W, Luo J, Zhang L-S, Zhou X-J, Wang P-C, Yang Y-X, Cheng Y-X (2013) Anthraquinone derivatives from Rumex plants and endophytic Aspergillus fumigatus and their effects on diabetic nephropathy. Bioorg Med Chem Lett 23:3905–3909

    CAS  PubMed  Article  Google Scholar 

  • Yang Y, Yang F, Zhao L, Duang R, Chen G, Li X, Li Q, Qin S, Ding Z (2016) A new polyoxygenated farnesylhexenone from fungus Penicillium sp. Nat Prod Res 30:65–68

    CAS  PubMed  Article  Google Scholar 

  • Yilmaz N, Visagie CM, Houbraken J, Frisvad JC, Samson RA (2014) Polyphasic taxonomy of the genus Talaromyces. Stud Mycol 78:175–341

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Yilmaz N, Visagie CM, Frisvad JC, Houbraken J, Seifert KA, Samson RA (2016) Taxonomic re-evaluation of species in Talaromyces section Islandici, using a polyphasic approach. Persoonia 36:37–56

    CAS  PubMed  Article  Google Scholar 

  • Yunzhe H (2012) Diversity in organism in the Usnea longissimi lichen. Afr J Microbiol Res 6:4797–4804

    Article  CAS  Google Scholar 

  • Zhai MM, Li J, Jiang CX, Shi YP, Di DL, Crews P, Wu QX (2016) The bioactive secondary metabolites from Talaromyces species. Nat Prod Bioperspect 6:1–24

    CAS  Article  Google Scholar 

  • Zhan J, Wijeratne EMK, Seliga CJ, Zhang J, Pierson EE, Pierson LS III, Vanetten HD, Gunatilaka AL (2004) A new anthraquinone and cytotoxic curvularins of a Penicillium sp. from the rhizosphere of Fallugia paradoxa of the Sonoran desert. J Antibiot 57:341–344

    CAS  Article  Google Scholar 

  • Zhang H, Ahima J, Yang Q, Zhao L, Zhang X, Zheng X (2021) A review of citrinin: Its occurrence, risk implication, analytical techniques, physiochemical properties and control. Food Res Int 141:110075

    CAS  PubMed  Article  Google Scholar 

  • Zhao YM, Deng CR, Chen X (1990) Arthrinium phaeospermum causing dermatomycosis, a new record of China. Acta Mycol Sin 9:232–235

    Google Scholar 

  • Zimmermann JL, Carlton WW, Tuite J (1979) Mycotoxicosis produced in swine by cultural products of an isolate of Aspergillus ochraceus II. Clinicopathological changes. Vet Pathol 16:702–709

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

This project was funded by Novo Nordic Foundation (grant no. NNF 18OC0034952).

Author information

Authors and Affiliations

Authors

Contributions

J.V.C. planned the review with J.C.F., T.O.L., and T.I.; wrote a major part of the text; and corrected and added to the tables and prepared some of the figures. J.C.F. made the tables and wrote parts of the text. T.I. wrote a major part of the text on the chemistry of the quinones and made a major part of the figures. T.O.L. added to the text throughout the manuscript. J.L.S., T.B.P., and M.R.N. wrote a major part of the Fusarium part and added it to the remaining text. T.E.S. and C.P. wrote the Arthrinium text and added it to the remaining text. All authors read and approved the manuscript.

Corresponding author

Correspondence to J. C. Frisvad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christiansen, J.V., Isbrandt, T., Petersen, C. et al. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 105, 8157–8193 (2021). https://doi.org/10.1007/s00253-021-11597-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11597-0

Keywords

  • Quinones
  • Benzoquinones
  • Anthraquinones
  • Naphtoquinones
  • Aspergillus
  • Penicillium
  • Talaromyces
  • Fusarium
  • Arthrinium