Andreu C, Gómez-Peinado J, Winandy L, Fischer R, del Olmo ML (2021) Surface display of HFBI and DewA hydrophobins on Saccharomyces cerevisiae modifies tolerance to several adverse conditions and biocatalytic performance. Appl Microbiol Biotechnol 105:1505–1518. https://doi.org/10.1007/s00253-021-11090-8
CAS
Article
PubMed
Google Scholar
Andrew C, Halvorsen R, Heegaard E, Kuyper TW, Heilmann-Clausen J, Krisai-Greilhuber I, Bässler C, Egli S, Gange AC, Høiland K, Kirk PM, Senn-Irlet B, Boddy L, Büntgen U, Kauserud H (2018) Continental-scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition. J Biogeogr 45:1942–1953. https://doi.org/10.1111/jbi.13374
Article
Google Scholar
Arastoo A, Nakazawa M, Sakamoto T, Kobayashi H, Ouchi K, Inatomi S, Ueda M (2018) Changes of trehalose content and trehalose-degrading activity during fruit-body formation and autolysis in Pleurotus sp. Mycoscience 59:479–482. https://doi.org/10.1016/j.myc.2018.05.002
Article
Google Scholar
Awasthi R, Bhandari K, Nayyar H (2015) Temperature stress and redox homeostasis in agricultural crops. Front Env Sci-Switz 3:1–24. https://doi.org/10.3389/fenvs.2015.00011
Article
Google Scholar
Bellettini MB, Fiorda FA, Maieves HA, Teixeira GL, Avila S, Hornung PS, Ribani RH (2019) Factors affecting mushroom Pleurotus spp. Saudi J Biol Sci 26:633–646. https://doi.org/10.1016/j.sjbs.2016.12.005
Article
PubMed
Google Scholar
Boone CHT, Grove RA, Adamcova D, Seravalli J, Adamec J (2017) Oxidative stress, metabolomics profiling, and mechanism of local anesthetic induced cell death in yeast. Redox Biol 12:139–149. https://doi.org/10.1016/j.redox.2017.01.025
CAS
Article
PubMed
PubMed Central
Google Scholar
Büntgen U, Kauserud H, Egli S (2012) Linking climate variability to mushroom productivity and phenology. Front Ecol Environ 10:14–19. https://doi.org/10.1890/110064
Article
Google Scholar
Chang TT, Zhao Y, Yang HL, Song XX, Yu CX, Zha L, Dong Q, Chen MJ (2021) Research progress on heat stress response in edible and medicinal fungi. Acta Edulis Fungi 28:124–134 (in Chinese with an English abstract). https://doi.org/10.16488/j.cnki.1005-9873.2021.01.01
Chen C, Li Q, Wang Q, Lu D, Zhang H, Wang J, Fu R (2017) Transcriptional profiling provides new insights into the role of nitric oxide in enhancing Ganoderma oregonense resistance to heat stress. Sci Rep 7:15694. https://doi.org/10.1038/s41598-017-15340-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Clerico EM, Tilitsky JM, Meng W, Gierasch LM (2015) How Hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J Mol Biol 427:1575–1588. https://doi.org/10.1016/j.jmb.2015.02.004
CAS
Article
PubMed
PubMed Central
Google Scholar
Deshaware S, Marathe SJ, Deska BD, J, Shamekh S, (2021) Investigation on mycelial growth requirements of Cantharellus cibarius under laboratory conditions. Arch Microbiol 203:1539–1545. https://doi.org/10.1007/s00203-020-02142-0
CAS
Article
PubMed
Google Scholar
Foulongne-Oriol M, Navarro P, Spataro C, Ferrer N, Savoie JM (2014) Deciphering the ability of Agaricus bisporus var. burnettii to produce mushrooms at high temperature (25 ˚C). Fungal Genet Biol 73:1–11. https://doi.org/10.1016/j.fgb.2014.08.013
Article
PubMed
Google Scholar
Gibney PA, Schieler A, Chen JC, Rabinowitz JD, Botstein D (2015) Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter. Proc Natl Acad Sci USA 112:6116–6121. https://doi.org/10.1073/pnas.1506289112
CAS
Article
PubMed
PubMed Central
Google Scholar
Halbwachs H, Simmel J (2018) Some like it hot, some not – tropical and arctic mushrooms. Fungal Biol Rev 32:143–155. https://doi.org/10.1016/j.fbr.2018.04.001
Article
Google Scholar
He X, Fang J, Guo Q, Wang M, Li Y, Meng Y, Huang L (2020) Advances in antiviral polysaccharides derived from edible and medicinal plants and mushrooms. Carbohydr Polym 229:115548. https://doi.org/10.1016/j.carbpol.2019.115548
CAS
Article
PubMed
Google Scholar
Hoa HT, Wang CL (2015) The Effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43:14–23. https://doi.org/10.5941/myco.2015.43.1.14
Article
PubMed
PubMed Central
Google Scholar
Hou L, Wang L, Wu X, Gao W, Zhang J, Huang C (2019) Expression patterns of two pal genes of Pleurotus ostreatus across developmental stages and under heat stress. BMC Microbiol 19:231. https://doi.org/10.1186/s12866-019-1594-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Hou L, Zhao M, Huang C, Wu X, Zhang J (2020a) Nitric oxide improves the tolerance of Pleurotus ostreatus to heat stress by inhibiting mitochondrial aconitase. Appl Environ Microbiol 86:e02303-e2319. https://doi.org/10.1128/AEM.02303-19
CAS
Article
PubMed
PubMed Central
Google Scholar
Hou Z, Chen Q, Zhao M, Huang C, Wu X (2020b) Genome-wide characterization of the Zn(II)2Cys6 zinc cluster-encoding gene family in Pleurotus ostreatus and expression analyses of this family during development stages and under heat stress. Peer J 8:e9336. https://doi.org/10.7717/peerj.9336
CAS
Article
PubMed
PubMed Central
Google Scholar
Inda ME, Vandenbranden M, Fernández A, De Mendoza D, Ruysschaert JM, Cybulski LE (2014) A lipid-mediated conformational switch modulates the thermosensing activity of DesK. Proc Natl Acad Sci USA 111:3579–3584. https://doi.org/10.1073/pnas.1317147111
CAS
Article
PubMed
PubMed Central
Google Scholar
Jain NK, Roy I (2008) Effect of trehalose on protein structure. Protein Sci 18:24–36. https://doi.org/10.1002/pro.3
CAS
Article
Google Scholar
Juvvadi PR, Lamoth F, Steinbach WJ (2014) Calcineurin as a multifunctional regulator: unraveling novel functions in fungal stress responses, hyphal growth, drug resistance, and pathogenesis. Fungal Biol Rev 28:56–69. https://doi.org/10.1016/j.fbr.2014.02.004
Article
PubMed
PubMed Central
Google Scholar
Kalaras MD, Richie JP, Calcagnotto A, Beelman RB (2017) Mushrooms: a rich source of the antioxidants ergothioneine and glutathione. Food Chem 233:429–433. https://doi.org/10.1016/j.foodchem.2017.04.109
CAS
Article
PubMed
Google Scholar
Kameshita I, Yamada Y, Nishida T, Sugiyama Y, Sueyoshi N, Watanabe A, Asada Y (2007) Involvement of Ca2+/calmodulin-dependent protein kinases in mycelial growth of the basidiomycetous mushroom, Coprinus cinereus. Biochim Biophys Acta 1770:1395–1403. https://doi.org/10.1016/j.bbagen.2007.05.008
CAS
Article
PubMed
Google Scholar
Kamthan A, Kamthan M, Kumar A, Sharma P, Ansari S, Thakur SS, Chaudhuri A, Datta A (2015) A calmodulin like EF hand protein positively regulates oxalate decarboxylase expression by interacting with E-box elements of the promoter. Sci Rep 5:14578. https://doi.org/10.1038/srep14578
CAS
Article
PubMed
PubMed Central
Google Scholar
Kang L, Fei H, Lin J, Guo L, Bai W (2013) Breeding of new high-temperature-tolerant strains of Flammulina velutipes. Sci Hortic 151:97–102. https://doi.org/10.1016/j.scienta.2012.12.024
Article
Google Scholar
Kleschyov AL (2017) The NO-heme signaling hypothesis. Free Radical Biol Med 112:544–552. https://doi.org/10.1016/j.freeradbiomed.2017.08.025
CAS
Article
Google Scholar
Krah F, Hess J, Hennicke F, Kar R, Bässler C (2021) Transcriptional response of mushrooms to artificial sun exposure. Ecol Evol 11:10538–10546. https://doi.org/10.1002/ece3.7862
Article
PubMed
PubMed Central
Google Scholar
Kong W, Huang C, Chen Q, Zou Y, Zhang J (2012a) Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis. Fungal Genet Biol 49:15–20. https://doi.org/10.1016/j.fgb.2011.12.003
CAS
Article
PubMed
Google Scholar
Kong WW, Huang CY, Chen Q, Zou YJ, Zhao MR, Zhang JX (2012b) Nitric oxide is involved in the regulation of trehalose accumulation under heat stress in Pleurotus eryngii var. tuoliensis. Biotechnol Lett 34:1915–1919. https://doi.org/10.1007/s10529-012-0988-2
Article
PubMed
Google Scholar
Kurahashi A, Sato M, Nishibori K, Fujimori F (2014) Heat shock protein 9 mRNA expression increases during fruiting body differentiation in Grifola frondosa and other edible mushrooms. Mycoscience 55:98–102. https://doi.org/10.1016/j.myc.2016.06.001
CAS
Article
Google Scholar
Larson AJ, Cansler CA, Cowdery SG, Hiebert S, Furniss TJ, Swanson ME, Lutz JA (2016) Post-firemorel (Morchella) mushroom abundance, spatial structure, and harvest sustainability. For Ecol Manage 377:16–25. https://doi.org/10.1016/j.foreco.2016.06.038
Article
Google Scholar
Latchman DS (1997) Transcription factors: an overview. Int J Biochem Cell Biol 29:1305–1312. https://doi.org/10.1016/s1357-2725(97)00085-x
CAS
Article
PubMed
Google Scholar
Lei M, Wu X, Huang C, Qiu Z, Wang L, Zhang R, Zhang J (2019) Trehalose induced by reactive oxygen species relieved the radial growth defects of Pleurotus ostreatus under heat stress. Appl Microbiol Biotechnol 103:5379–5390. https://doi.org/10.1007/s00253-019-09834-8
CAS
Article
PubMed
Google Scholar
Leonardi P, Iotti M, Donati Zeppa S, Lancellotti E, Amicucci A, Zambonelli A (2017) Morphological and functional changes in mycelium and mycorrhizas of Tuber borchii due to heat stress. Fungal Ecol 29:20–29. https://doi.org/10.1016/j.funeco.2017.05.003
Article
Google Scholar
Li B, Gao K, Ren H, Tang W (2018) Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol 60:757–779. https://doi.org/10.1111/jipb.12701
Article
PubMed
Google Scholar
Li C, Shi L, Chen D, Ren A, Gao T, Zhao M (2015) Functional analysis of the role of glutathione peroxidase (GPx) in the ROS signaling pathway, hyphal branching and the regulation of ganoderic acid biosynthesis in Ganoderma lucidum. Fungal Genet Biol 82:168–180. https://doi.org/10.1016/j.fgb.2015.07.008
CAS
Article
PubMed
Google Scholar
Li ZP, Yu CX, Ren YF, Chen MJ, Cha L, Yang HL, Song XX, Zhao Y (2020) Effect of heat stress on fatty acids in Stropharia rugosoannulata mycelia. Acta Edulis Fungi 27:45–50 (in Chinese with an English abstract). https://doi.org/10.16488/j.cnki.1005-9873.2020.02.007
Liang S, Li G, Zhang X, Ren A, Tan G, Zhao M (2015) The regulation of methyl jasmonate on hyphal branching and GA biosynthesis in Ganoderma lucidum partly via ROS generated by NADPH oxidase. Fungal Genet Biol 81:201–211. https://doi.org/10.1016/j.fgb.2014.12.002
CAS
Article
Google Scholar
Liu HT, Gao F, Cui SJ, Han JL, Sun DY, Zhou RG (2006) Primary evidence for involvement of IP3 in heat-shock signal transduction in Arabidopsis. Cell Res 16:394–400. https://doi.org/10.1038/sj.cr.7310051
CAS
Article
PubMed
Google Scholar
Liu KL, Chen WG (2015) Recent advances in plant heat-related genes. J Plant Genet Resour 16:127–132 (in Chinese with an English abstract). https://doi.org/10.13430/j.cnki.jpgr.2015.01.018
Liu JH, Shang XD, Liu JY, Tan Q (2016) Changes in trehalose content, enzyme activity and gene expression related to trehalose metabolism in Flammulina velutipes under heat shock. Microbiology 162:1274–1285. https://doi.org/10.1099/mic.0.000324
CAS
Article
PubMed
Google Scholar
Liu R, Cao P, Ren A, Wang S, Yang T, Zhu T, Shi L, Zhu J, Jiang AL, Zhao MW (2018a) SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum. Redox Biol 16:388–400. https://doi.org/10.1016/j.redox.2018.03.018
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu R, Shi L, Zhu T, Yang T, Ren A, Zhu J, Zhao MW (2018b) Cross talk between nitric oxide and calcium-calmodulin regulates ganoderic acid biosynthesis in Ganoderma lucidum under heat stress. Appl Environ Microbiol 84:e00043-e118. https://doi.org/10.1128/AEM.00043-18
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu R, Zhang X, Ren A, Shi DK, Shi L, Zhu J, Yu HS, Zhao MW (2018c) Heat stress–induced reactive oxygen species participate in the regulation of HSP expression, hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum. Microbiol Res 209:43–54. https://doi.org/10.1016/j.micres.2018.02.006
CAS
Article
PubMed
Google Scholar
Liu XB, Xia EH, Li M, Cui YY, Wang PM, Zhang JX, Xie BG, Xu JP, Yan JJ, Li J, Nagy LG, Yang ZL (2020) Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformis. PLoS ONE 15:e0239890. https://doi.org/10.1371/journal.pone.0239890
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu XM, Wu XL, Chen Q, Qiu ZH, Zhang JX, Huang CY (2017a) Effects of heat stress on Pleurotus eryngii mycelial growth and its resistance to Trichoderma asperellum. Mycosystema 36:1566–1574 (in Chinese with an English abstract). https://doi.org/10.13346/j.mycosystema.160255
Liu XM, WU XL, Gao W, Qu JB, Chen Q, Huang CY, Zhang JX, (2019) Protective roles of trehalose in Pleurotus pulmonarius during heat stress response. J Integr Agr 18:428–437. https://doi.org/10.1016/S2095-3119(18)62010-6
CAS
Article
Google Scholar
Liu YN, Lu XX, Chen D, Lu YP, Ren A, Shi L, Zhu J, Jiang AL, Yu HS, Zhao MW (2017b) Phospholipase D and phosphatidic acid mediate heat stress induced secondary metabolism in Ganoderma lucidum. Environ Microbiol 19:4657–4669. https://doi.org/10.1111/1462-2920.13928
CAS
Article
PubMed
Google Scholar
Liu YN, Lu XX, Ren A, Shi L, Zhu J, Jiang AL, Yu HS, Zhao MW (2018d) Conversion of phosphatidylinositol (PI) to PI4–phosphate (PI4P) and then to PI(4,5)P2 is essential for the cytosolic Ca2+ concentration under heat stress in Ganoderma lucidum. Environ Microbiol 20:2456–2468. https://doi.org/10.1111/1462-2920.14254
CAS
Article
PubMed
Google Scholar
Liu YN, Zhang TJ, Lu XX, Ma BL, Ren A, Shi L, Jiang AL, Yu HS, Zhao MW (2017c) Membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in Ganoderma lucidum. Environ Microbiol 19:1653–1668. https://doi.org/10.1111/1462-2920.13693
CAS
Article
PubMed
Google Scholar
Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. BBA Biomember 1666:142–157. https://doi.org/10.1016/j.bbamem.2004.08.002
CAS
Article
Google Scholar
Loshchinina EA, Nikitina VE (2016) Role of the NO synthase system in response to abiotic stress factors for basidiomycetes Lentinula edodes and Grifola frondosa. Microbiology 85:165–171. https://doi.org/10.1134/S0026261716020120
CAS
Article
Google Scholar
Lu Z, Kong X, Lu Z, Xiao M, Chen M, Zhu L, Shen Y, Hu X, Song S (2014) Para-aminobenzoic acid (PABA) synthase enhances thermotolerance of mushroom Agaricus bisporus. PLoS ONE 9:e91298. https://doi.org/10.1371/journal.pone.0091298
CAS
Article
PubMed
PubMed Central
Google Scholar
Ma CJ, Wang GZ, Zhou SS, Luo Y, Gong YH, Bian YB (2018) Functional analyses of anthranilate synthase gene Letrp E in Lentinula edodes by RNAi mediated gene knockdown. Mycosystema 37:576–583 (in Chinese with an English abstract). https://doi.org/10.13346/j.mycosystema.170244
Matsumoto N, Hattori H, Matsutani M, Matayoshi C, Toyama H, Kataoka N, Yakushi T, Matsushita K (2018) A single-nucleotide insertion in a drug transporter gene induces a thermotolerance phenotype in Gluconobacter frateurii by increasing the NADPH/NADP+ ratio via metabolic change. Appl Environ Microbiol 84:e00354-e418. https://doi.org/10.1128/AEM.00354-18
CAS
Article
PubMed
PubMed Central
Google Scholar
Meng LJ, Kong WW, Wu XL, Liu XM, Huang CY, Zhang JX (2015) Biochemical pathway analysis of exogenous NO improving heat-tolerance of Pleurotus eryngii var. tuoliensis. Mycosystema 34:632–639 (in Chinese with an English abstract). https://doi.org/10.13346/j.mycosystema.150038
Mizunoe Y, Kobayashi M, Sudo Y, Watanabe S, Yasukawa H, Natori D, Hoshino A, Negishi A, Okita N, Komatsu M, Higami Y (2018) Trehalose protects against oxidative stress by regulating the Keap1–Nrf2 and autophagy pathways. Redox Biol 15:115–124. https://doi.org/10.1016/j.redox.2017.09.007
CAS
Article
PubMed
Google Scholar
Mogk A, Kummer E, Bukau B (2015) Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Front Mol Biosci 2:22. https://doi.org/10.3389/fmolb.2015.00022
CAS
Article
PubMed
PubMed Central
Google Scholar
Napoli C, Paolisso G, Casamassimi A, Al-Omran M, Barbieri M, Sommese L, Infante T, Ignarro LJ (2013) Effects of nitric oxide on cell proliferation: novel insights. J Am Coll Cardiol 62:89–95. https://doi.org/10.1016/j.jacc.2013.03.070
CAS
Article
PubMed
Google Scholar
Orban A, Weber A, Herzog R, Hennicke F, Rühl M (2021) Transcriptome of different fruiting stages in the cultivated mushroom Cyclocybe aegerita suggests a complex regulation of fruiting and reveals enzymes putatively involved in fungal oxylipin biosynthesis. BMC Genomics 22:324. https://doi.org/10.1186/s12864-021-07648-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Parankusam S, Adimulam SS, Bhatnagar-Mathur P, Sharma KK (2017) Nitric Oxide (NO) in plant heat stress tolerance: current knowledge and perspectives. Front Plant Sci 8:1582. https://doi.org/10.3389/fpls.2017.01582
Article
PubMed
PubMed Central
Google Scholar
Pathak T, Trebak M (2018) Mitochondrial Ca2+ signaling. Pharmacol Therapeut 192:112–123. https://doi.org/10.1016/j.pharmthera.2018.07.001
CAS
Article
Google Scholar
Pavlík M, Fleischer P, Fleischer P Jr, Pavlík M Jr, Šuleková M (2020) Evaluation of the carbon dioxide production by fungi under different growing conditions. Curr Microbiol 77:2374–2384. https://doi.org/10.1007/s00284-020-02033-z
CAS
Article
PubMed
Google Scholar
Pelkmans JF, Patil MB, Gehrmann T, Reinders MJT, Wösten HAB, Lugones LG (2017) Transcription factors of Schizophyllum commune involved in mushroom formation and modulation of vegetative growth. Sci Rep 7:310. https://doi.org/10.1038/s41598-017-00483-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Petitjean M, Teste MA, François JM, Parrou JL (2015) Yeast tolerance to various stresses relies on the trehalose-6P synthase (Tps1) protein, not on trehalose. J Biol Chem 290:16177–16190. https://doi.org/10.1074/jbc.M115.653899
CAS
Article
PubMed
PubMed Central
Google Scholar
Prasad A, Ferretti U, Sedlářová M, Pospíšil P (2016) Singlet oxygen production in Chlamydomonas reinhardtii under heat stress. Sci Rep 6:20094. https://doi.org/10.1038/srep20094
CAS
Article
PubMed
PubMed Central
Google Scholar
Qiu Z, Wu X, Gao W, Zhang J, Huang C (2018a) High temperature induced disruption of the cell wall integrity and structure in Pleurotus ostreatus mycelia. Appl Microbiol Biotechnol 102:6627–6636. https://doi.org/10.1007/s00253-018-9090-6
CAS
Article
PubMed
Google Scholar
Qiu Z, Wu X, Zhang J, Huang C (2018b) High-temperature induced changes of extracellular metabolites in Pleurotus ostreatus and their positive effects on the growth of Trichoderma asperellum. Front Microbiol 9:10. https://doi.org/10.3389/fmicb.2018.00010
Article
PubMed
PubMed Central
Google Scholar
Rohman MM, Islam MR, Monsur MB, Amiruzzaman M, Fujita M, Hasanuzzaman M (2019) Trehalose protects maize plants from salt stress and phosphorus deficiency. Plants 8:568. https://doi.org/10.3390/plants8120568
CAS
Article
PubMed Central
Google Scholar
Salmones D, Gaitan-Hernandez R, Mata G (2018) Cultivation of Mexican wild strains of Agaricus bisporus, the button mushroom, under different growth conditions in vitro and determination of their productivity. Biotechnol Agron Soc Environ 22:45–53. https://doi.org/10.25518/1780-4507.16281
CAS
Article
Google Scholar
Shi L, Gong L, Zhang X, Ren A, Gao T, Zhao M (2015) The regulation of methyl jasmonate on hyphal branching and GA biosynthesis in Ganoderma lucidum partly via ROS generated by NADPH oxidase. Fungal Genet Biol 81:201–211. https://doi.org/10.1016/j.fgb.2014.12.002
CAS
Article
PubMed
Google Scholar
Song C, Chen Q, Wu X, Zhang J, Huang C (2014) Heat stress induces apoptotic-like cell death in two Pleurotus species. Curr Microbiol 69:611–616. https://doi.org/10.1007/s00284-014-0634-4
CAS
Article
PubMed
Google Scholar
Sun Y, Zhang M, Fang Z (2020) Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: a review. Trends Food Sci Tech 105:468–482. https://doi.org/10.1016/j.tifs.2019.02.026
CAS
Article
Google Scholar
Taipale M, Jarosz DF, Lindquist S (2010) Hsp90 at the hub of protein homeostasis: Emerging mechanisitic insights. Nat Rev Mol Cell Biol 11:515–528. https://doi.org/10.1038/nrm2918
CAS
Article
PubMed
Google Scholar
Tan X, Sun J, Ning H, Qin Z, Miao Y, Sun T, Zhang X (2018a) De novo transcriptome sequencing and comprehensive analysis of the heat stress response genes in the basidiomycetes fungus Ganoderma lucidum. Gene 661:139–151. https://doi.org/10.1016/j.gene.2018.03.093
CAS
Article
PubMed
Google Scholar
Tan X, Sun J, Xu Z, Li H, Hu J, Ning H, Qin Z, Pei H, Sun T, Zhang X (2018b) Effect of heat stress on production and in-vitro antioxidant activity of polysaccharides in Ganoderma lucidum. Bioprocess Biosyst Eng 41:135–141. https://doi.org/10.1007/s00449-017-1850-7
CAS
Article
PubMed
Google Scholar
Tang RH, Han S, Zheng H, Cook CW, Choi CS, Woerner TE, Jackson RB, Pei ZM (2007) Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis. Science 315:1423–1426. https://doi.org/10.1126/science.1134457
CAS
Article
PubMed
Google Scholar
Tian JL, Ren A, Wang T, Zhu J, Hu YR, Shi L, Yu HS, Zhao MW (2019) Hydrogen sulfide, a novel small molecule signalling agent, participates in the regulation of ganoderic acids biosynthesis induced by heat stress in Ganoderma lucidum. Fungal Genet Biol 130:19–30. https://doi.org/10.1016/j.fgb.2019.04.014
CAS
Article
PubMed
Google Scholar
Tiwari S, Thakur R, Shankar J (2015) Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int 2015:132635. https://doi.org/10.1155/2015/132635
CAS
Article
PubMed
PubMed Central
Google Scholar
Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79:243–262. https://doi.org/10.1128/MMBR.00001-15
CAS
Article
PubMed
PubMed Central
Google Scholar
Turło J (2014) The biotechnology of higher fungi - current state and perspectives. Folia Biol Oecol 10:49–65. https://doi.org/10.2478/fobio-2014-0010
Vihervaara A, Duarte FM, Lis JT (2018) Molecular mechanisms driving transcriptional stress responses. Nat Rev Genet 19:385–397. https://doi.org/10.1038/s41576-018-0001-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Vu LD, Gevaert K, De Smet I (2019) Feeling the heat: searching for plant thermosensors. Trends Plant Sci 24:210–219. https://doi.org/10.1016/j.tplants.2018.11.004
CAS
Article
PubMed
Google Scholar
Wan Mahari WA, Peng WX, Nam WL, Yang H, Lee XY, Lee YK, Liew RK, Ma NL, Mohammad A, Sonne C, Le QV, Show PL, Chen WH, Lam SS (2020) A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. J Hazard Mater 400:123156. https://doi.org/10.1016/j.jhazmat.2020.123156
CAS
Article
PubMed
Google Scholar
Wang G, Luo Y, Wang C, Zhou Y, Mou C, Kang H, Xiao Y, Bian Y, Gong YH (2020) Hsp40 protein LeDnaJ07 enhances the thermotolerance of Lentinula edodes and regulates IAA biosynthesis by interacting LetrpE. Front Microbiol 11:707. https://doi.org/10.3389/fmicb.2020.00707
Article
PubMed
PubMed Central
Google Scholar
Wang GZ, Ma CJ, Luo Y, Zhou SS, Zhou Y, Ma XL, Cai YL, Yu JJ, Bian YB, Gong YH (2018a) Proteome and transcriptome reveal involvement of heat shock proteins and indoleacetic acid metabolism process in Lentinula edodes thermotolerance. Cell Physiol Biochem 50:1617–1637. https://doi.org/10.1159/000494784
CAS
Article
PubMed
Google Scholar
Wang G, Zhou S, Luo Y, Ma C, Gong Y, Zhou Y, Gao S, Huang Z, Yan L, Hu Y, Bian Y (2018b) The heat shock protein 40 LeDnaJ regulates stress resistance and indole-3-acetic acid biosynthesis in Lentinula edodes. Fungal Genet Biol 118:37–44. https://doi.org/10.1016/j.fgb.2018.07.002
CAS
Article
PubMed
Google Scholar
Wang L, Gao W, Wu X, Zhao M, Qu J, Huang C, Zhang J (2018c) Genome-wide characterization and expression analyses of Pleurotus ostreatus MYB transcription factors during developmental stages and under heat stress based on de novo sequenced genome. Int J Mol Sci 19:2052. https://doi.org/10.3390/ijms19072052
CAS
Article
PubMed Central
Google Scholar
Wang L, Wu X, Gao W, Zhao M, Zhang J, Huang C (2017) Differential expression patterns of Pleurotus ostreatus catalase genes during developmental stages and under heat stress. Genes 8:335. https://doi.org/10.3390/genes8110335
CAS
Article
PubMed Central
Google Scholar
Wu X, Hou Z, Huang C, Chen Q, Gao W, Zhang J (2018) Cloning, purification and characterization of trehalose-6-phosphate synthase from Pleurotus tuoliensis. Peer J 12:e5230. https://doi.org/10.7717/peerj.5230
CAS
Article
Google Scholar
Xin MM, Zhao Y, Huang JL, Song CY, Chen MJ (2016) Expression and bioinformatic analysis of hydrophobin protein gene (hyd1) in Lentinula edodes under high temperature stress. Molecular Plant Breeding 14:2645–2652 (in Chinese with an English abstract). https://doi.org/10.13271/j.mpb.014.002645.
Xu D, Wang Y, Keerio AA, Ma A (2021a) Identification of hydrophobin genes and their physiological functions related to growth and development in Pleurotus ostreatus. Microbiol Res 247:126723. https://doi.org/10.1016/j.micres.2021.126723
CAS
Article
PubMed
Google Scholar
Xu D, Zhou Q, Yan B, Ma A (2021b) Identification and physiological function of one microRNA (Po-MilR-1) in oyster mushroom Pleurotus ostreatus. Mycoscience 62:182–188. https://doi.org/10.47371/mycosci.2021.01.004
Article
Google Scholar
Xu L, Gao J, Guo L, Hu C (2020) Heat shock protein 70 (HmHsp70) from Hypsizygus marmoreus confers thermotolerance to tobacco. AMB Express 10:12. https://doi.org/10.1186/s13568-020-0947-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Xu L, Guo L, Yu H (2021c) Label-free comparative proteomics analysis revealed heat stress responsive mechanism in Hypsizygus marmoreus. Front Microbiol 11:541967. https://doi.org/10.3389/fmicb.2020.541967
Article
PubMed
PubMed Central
Google Scholar
Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L (2010) Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol 153:1895–1906. https://doi.org/10.1104/pp.110.160424
CAS
Article
PubMed
PubMed Central
Google Scholar
Yan Z, Zhao M, Wu X, Zhang J (2020) Metabolic response of Pleurotus ostreatus to continuous heat stress. Front Microbiol 10:3148. https://doi.org/10.3389/fmicb.2019.03148
Article
PubMed
PubMed Central
Google Scholar
Yao XR, Gao W, Zhang JX, Chang MC, Huang CY, Wu XL (2019) The regulation of cytosolic Ca2+ on gene expression of heat shock proteins in Pleurotus ostreatus under heat stress. Acta Edulis Fungi 26:17–23 (in Chinese with an English abstract). https://doi.org/10.16488/j.cnki.1005-9873.2019.02.003
Yin C, Zheng L, Zhu J, Chen L, Ma A (2015) Enhancing stress tolerance by overexpression of a methionine sulfoxide reductase A (MsrA) gene in Pleurotus ostreatus. Appl Microbiol Biotechnol 99:3115–3126. https://doi.org/10.1007/s00253-014-6365-4
CAS
Article
PubMed
Google Scholar
Zervakis G, Philippoussis A, Ioannidou S, Diamantopoulou P (2001) Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiol 46:231–234. https://doi.org/10.1007/BF02818539
CAS
Article
Google Scholar
Zhang J, Wang F, Liu K, Liu Q, Yang Y, Dong C (2018) Heat and light stresses affect metabolite production in the fruit body of the medicinal mushroom Cordyceps militaris. Appl Microbiol Biotechnol 102:4523–4533. https://doi.org/10.1007/s00253-018-8899-3
CAS
Article
Google Scholar
Zhang RY, Hu DD, Zhang YY, Goodwin PH, Huang CY, Chen Q, Gao W, Wu XL, Zou YJ, Qu JB, Zhang JX (2016a) Anoxia and anaerobic respiration are involved in “spawn-burning” syndrome for edible mushroom Pleurotus eryngii grown at high temperatures. Sci Hortic 199:75–80. https://doi.org/10.1016/j.scienta.2015.12.035
Article
Google Scholar
Zhang X, Ren A, Li MJ, Cao PF, Chen TX, Zhang G, Shi L, Jiang AL, Zhao MW (2016b) Heat stress modulates mycelium growth, heat shock protein expression, ganoderic acid biosynthesis, and hyphal branching of Ganoderma lucidum via cytosolic Ca2+. Appl Environ Microbiol 82:4112–4125. https://doi.org/10.1128/AEM.01036-16
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao X, Yang H, Chen M, Song X, Yu C, Zhao Y, Wu Y (2018) Reference gene selection for quantitative real-time PCR of mycelia from Lentinula edodes under high-temperature stress. Biomed Res Int 2018. https://doi.org/10.1155/2018/1670328
Zhou L, Liu W, Zou L, Xiong Z, Hu X, Chen J (2017) Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenoloxidase subjected to thermal treatment. Food Chem 214:423–431. https://doi.org/10.1016/j.foodchem.2016.07.041
CAS
Article
PubMed
Google Scholar
Zhou SS, Wang GZ, Luo Y, Ma CJ, Gong YH, Bian YB, Zhou Y (2018) Auxin and auxin analogues enhancing the thermotolerance of Lentinula edodes. Mycosystema 37:1723–1730 (in Chinese with an English abstract). https://doi.org/10.13346/j.mycosystema.180145
Zhu W, Hu J, Li Y, Yang B, Guan Y, Xu C, Chen F, Chi J, Bao Y (2019) Comparative proteomic analysis of Pleurotus ostreatus reveals great metabolic differences in the cap and stipe development and the potential role of Ca2+ in the primordium differentiation. Int J Mol Sci 20:6317. https://doi.org/10.3390/ijms20246317
CAS
Article
PubMed Central
Google Scholar
Zou Y, Zhang M, Qu J, Zhang J (2018) iTRAQ-based quantitative proteomic analysis reveals proteomic changes in mycelium of Pleurotus ostreatus in response to heat stress and subsequent recovery. Front Microbiol 9:2368. https://doi.org/10.3389/fmicb.2018.02368
Article
PubMed
PubMed Central
Google Scholar
Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM (2015) Biological and physiological role of reactive oxygen species – the good, the bad and the ugly. Acta Physiol 214:329–348. https://doi.org/10.1111/apha.12515
CAS
Article
Google Scholar