Skip to main content

Performance of QuantaMatrix Microfluidic Agarose Channel system integrated with mycobacteria growth indicator tube liquid culture

Abstract

The QuantaMatrix Microfluidic Agarose Channel (QMAC) system was used for rapid drug susceptibility testing (DST). Here, we performed DST using QMAC integrated with the mycobacteria growth indicator tube (MGIT) liquid culture employing a specially designed cross agarose channel for the tuberculosis chip. MGIT-, QMAC-, and Löwenstein–Jensen (LJ)-DSTs were performed using 13 drugs. The protocol for QMAC-DST was optimized using the inoculum obtained after the disaggregation of Mycobacterium tuberculosis clumps in MGIT culture. The completion times of QMAC-DST and MGIT-DST were analyzed, and the results of all three DSTs were compared. Discrepant results were analyzed using line probe assays and DNA sequencing. Nontuberculous mycobacteria were distinguished using the ρ-nitrobenzoic acid inhibition test. The overall agreement rate of QMAT-DST and LJ-DST was 97.0% and that of QMAT-DST and MGIT-DST was 86.3%. An average turnaround time for DST was 5.4 days, which was considerably less than the time required for MGIT-DST. The overall time required to obtain DST results using QMAC-DST integrated with MGIT culture was an average of 18.6 days: 13.2 days for culture and identification and 5.4 days for DST. Hence, QMAC-DST integrated with liquid culture can be used to perform DSTs with short turnaround times and effective detection.

Key points

QMAC system can simultaneously perform phenotypic DST with 13 anti-TB drugs and PNB.

An optimized DST protocol led to a marked decrease in clumping in MGIT culture.

QMAC system integrated with MGIT liquid culture system reduced the turnaround time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Banu S, Rahman SM, Khan MS, Ferdous SS, Ahmed S, Gratz J, Stroup S, Pholwat S, Heysell SK, Houpt ER (2014) Discordance across several methods for drug susceptibility testing of drug-resistant Mycobacterium tuberculosis isolates in a single laboratory. J Clin Microbiol 52:156–163. https://doi.org/10.1128/JCM.02378-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Canetti G, Froman S, Grosset J, Hauduroy P, Langerova M, Mahler HT, Meissner G, Mitchison DA, Sula L (1963) Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bull World Health Organ 29:565–578

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chedore P, Bertucci L, Wolfe J, Sharma M, Jamieson F (2010) Potential for erroneous results indicating resistance when using the Bactec MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol 48:300–301. https://doi.org/10.1128/JCM.01775-09

    CAS  Article  PubMed  Google Scholar 

  4. Choi J, Yoo J, Kim KJ, Kim EG, Park KO, Kim H, Kim H, Jung H, Kim T, Choi M, Kim HC, Ryoo S, Jung YG, Kwon S (2016) Rapid drug susceptibility test of Mycobacterium tuberculosis using microscopic time-lapse imaging in an agarose matrix. Appl Microbiol Biotechnol 100:2355–2365. https://doi.org/10.1007/s00253-015-7210-0

    CAS  Article  PubMed  Google Scholar 

  5. Chopra KK, Sidiq Z, Hanif M, Dwivedi KK (2020) Advances in the diagnosis of tuberculosis - journey from smear microscopy to whole genome sequencing. Indian J Tuberc 67:S61–S68. https://doi.org/10.1016/j.ijtb.2020.09.026

    CAS  Article  PubMed  Google Scholar 

  6. Denkinger CM, Kik SV, Cirillo DM, Casenghi M, Shinnick T, Weyer K, Gilpin C, Boehme CC, Schito M, Kimerling M, Pai M (2015) Defining the needs for next generation assays for tuberculosis. J Infect Dis 211:S29–S38. https://doi.org/10.1093/infdis/jiu821

    Article  PubMed  PubMed Central  Google Scholar 

  7. Farhat MR, Sultana R, Iartchouk O, Bozeman S, Galagan J, Sisk P, Stolte C, Nebenzahl-Guimaraes H, Jacobson K, Sloutsky A, Kaur D, Posey J, Kreiswirth BN, Kurepina N, Rigouts L, Streicher EM, Victor TC, Warren RM, van Soolingen D, Murray M (2016) Genetic determinants of drug resistance in Mycobacterium tuberculosis and their diagnostic value. Am J Respir Crit Care Med 194:621–630. https://doi.org/10.1164/rccm.201510-2091OC

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, vanSoolingen D, Jensen P, Bayona J (2010) Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375:1830–1843. https://doi.org/10.1016/S0140-6736(10)60410-2

    Article  PubMed  Google Scholar 

  9. Garrigo M, Aragon LM, Alcaide F, Borrell S, Cardenosa E, Galan JJ, Gonazlez-Martin J, Martin-Casabona N, Moreno C, Salvado M, Coll P (2007) Multicenter laboratory evaluation of the MB/BacT Mycobacterium detection system and the Bactec MGIT 960 system in comparison with the Bactec 460TB system for susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 45:1766–1770. https://doi.org/10.1128/JCM.02162-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Ghodbane R, Raoult D, Drancourt M (2014) Dramatic reduction of culture time of Mycobacterium tuberculosis. Sci Rep 4:4236. https://doi.org/10.1038/srep04236

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Hwang SM, Hwang KC, Hong YJ, Lee HR, Kim TS, Park KU, Song J, Lee JH, Kim EC (2014) Improving antitubercular drug susceptibility testing with liquid media. Ann Clin Lab Sci 44:123–130

    CAS  PubMed  Google Scholar 

  12. Jang MA, Koh WJ, Huh HJ, Kim SY, Jeon K, Ki CS, Lee NY (2014) Distribution of nontuberculous mycobacteria by multigene sequence-based typing and clinical significance of isolated strains. J Clin Microbiol 52(4):1207–1212. https://doi.org/10.1128/JCM.03053-13

    Article  PubMed  PubMed Central  Google Scholar 

  13. Johansen IS, Thomsen VØ, Marjamäki M, Sosnovskaja A, Lundgren B (2004) Rapid, automated, nonradiometric susceptibility testing of Mycobacterium tuberculosis complex to four first-line antituberculous drugs used in standard short-course chemotherapy. Diagn Microbiol Infect Dis 50:103–107. https://doi.org/10.1016/j.diagmicrobio.2004.04.001

    CAS  Article  PubMed  Google Scholar 

  14. Joloba ML, Johnson JL, Feng PJ, Bozeman L, Goldberg SV, Morgan K, Gitta P, Boom HW, Heilig CM, Mayanja-Kizza H, Eisenach KD (2014) What is the most reliable solid culture medium for tuberculosis treatment trials? Tuberculosis 94:311–316. https://doi.org/10.1016/j.tube.2014.03.002

    CAS  Article  PubMed  Google Scholar 

  15. Jung YG, Kim H, Lee S, Kim S, Jo E, Kim EG, Choi J, Kim HJ, Yoo J, Lee HJ, Kim H, Jung H, Ryoo S, Kwon S (2018) A rapid culture system uninfluenced by an inoculum effect increase reliability and convenience for drug susceptibility testing of Mycobacterium tuberculosis. Sci Rep 8:8651. https://doi.org/10.1038/s41598-018-26419-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Kam KM, Sloutsky A, Yip CW, Bulled N, Seung KJ, Zignol M, Espinal M, Kim SJ (2010) Determination of critical concentrations of second-line anti-tuberculosis drugs with clinical and microbiological relevance. Int J Tuberc Lung Dis 14:282–288

    CAS  PubMed  Google Scholar 

  17. Kendall EA, Sahu S, Pai M, Fox GJ, Varaine F, Cox H, Cegielski JP, Mabote L, Vassall A, Dowdy DW (2019) What will it take to eliminate drug-resistant tuberculosis? Int J Tuberc Lung Dis 23:535–546. https://doi.org/10.5588/ijtld.18.0217

    CAS  Article  PubMed  Google Scholar 

  18. Kiepiela P, Biship KS, Smith AN, Roux L, York DF (2000) Genomic mutations in the katG, inhA and aphC genes are useful for the prediction of isoniazid resistance in Mycobacterium tuberculosis isolates from Kwazulu Natal, South Africa. Tuber Lung Dis 80:47–56. https://doi.org/10.1054/tuld.1999.0231

    CAS  Article  PubMed  Google Scholar 

  19. Lee S, Chu D, Choi YM, Jo E, Kim S, Kim H, Kim HJ, Chang J, Sung H, Kang G, Jin B, Kim EG, Kwon S, Kim MN (2019) Clinical validation of the QMAC-DST system for testing the drug susceptibility of Mycobacterium tuberculosis to first- and second-line drugs. Front Microbiol 10:706. https://doi.org/10.3389/fmicb.2019.00706

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lin SY, Desmond E, Bonato D, Gross W, Siddiqi S (2009) Multicenter evaluation of bactec MGIT 960 system for second-line drug susceptibility testing of Mycobacterium tuberculosis complex. J Clin Microbiol 47(11):3630–3634. https://doi.org/10.1128/JCM.00803-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. MacLean E, Kohli M, Weber SF, Suresh A, Schumacher SG, Denkinger CM, Pai M (2020) Advances in molecular diagnosis of tuberculosis. J Clin Microbiol 58:e01582–e01519. https://doi.org/10.1128/JCM.01582-19

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Mase SR, Chorba T (2019) Treatment of drug-resistant tuberculosis. Clin Chest Med 40:775–795. https://doi.org/10.1016/j.ccm.2019.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  23. Migliori GB, Nardell E, Yedilbayev A, D'Ambrosio L, Centis R, Tadolini M, van den Boom M, Ehsani S, Sotgiu G, Dara M (2019) Reducing tuberculosis transmission: a consensus document from the World Health Organization Regional Office for Europe. Eur Respir J 53:1900391. https://doi.org/10.1183/13993003.00391-2019

    Article  PubMed  Google Scholar 

  24. Mitchison DA (2005) Drug resistance in tuberculosis. Eur Respir J 25:376–379. https://doi.org/10.1183/09031936.05.00075704

    CAS  Article  PubMed  Google Scholar 

  25. Oberlies NH, Li C, McGivney RJ, Alali FQ, Tanner JR, Falkinham JO 3rd (2008) Microbial-mediated release of bisphenol A from polycarbonate vessels. Lett Appl Microbiol 46:271–275. https://doi.org/10.1111/j.1472-765X.2007.02301.x

    CAS  Article  PubMed  Google Scholar 

  26. Pantanowitz L, Michelow P, Khalbuss WE (2012) Cytopathology of infectious diseases. In: Khalbuss EW, Laucirica R, Pantanowitz L (eds) Pulmonary infections, 1st edn. Springer, New York, pp 121–159

    Google Scholar 

  27. Parsons LM, Somoskövi A, Urbanczik R, Salfinger M (2004) Laboratory diagnostic aspects of drug resistant tuberculosis. Front Biosci 9:2086–2105. https://doi.org/10.1016/j.mimet.2008.06.015

    CAS  Article  PubMed  Google Scholar 

  28. Piersimoni C, Olivieri A, Benacchio L, Scarparo C (2006) Current perspectives on drug susceptibility testing of Mycobacterium tuberculosis complexes: the automated nonradiometric systems. J Clin Microbiol 44:20–28. https://doi.org/10.1128/JCM.44.1.20-28.2006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Pinheiro MD, Ribeiro MM (2000) Comparison of the Bactec 460TB system and the Bactec MGIT 960 system in recovery of mycobacteria from clinical specimens. Clin Microbiol Infect 6:171–172. https://doi.org/10.1046/j.1469-0691.2000.00036-4.x

    CAS  Article  PubMed  Google Scholar 

  30. Rodrigues C, Jani J, Shenai S, Thakkar P, Siddiqi S, Mehta A (2008) Drug susceptibility testing of Mycobacterium tuberculosis against second-line drugs using the Bactec MGIT 960 System. Int J Tuberc Lung Dis 12:1449–1455

    CAS  PubMed  Google Scholar 

  31. Rüsch-Gerdes S, Pfyffer GE, Casal M, Chadwick M, Siddiqi S (2006) Multicenter laboratory validation of the Bactec MGIT 960 technique for testing susceptibilities of Mycobacterium tuberculosis to classical second-line drugs and newer antimicrobials. J Clin Microbiol 44:688–692. https://doi.org/10.1128/JCM.44.3.688-692.2006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Said HM, Kock MM, Ismail NA, Bada K, Omar SV, Osman AG, Hoosen AA, Ehlers MM (2012) Comparison between the Bactec MGIT 960 system and the agar proportion method for susceptibility testing of multidrug resistant tuberculosis strains in a high burden setting of South Africa. BMC Infect Dis 12:369. https://doi.org/10.1186/1471-2334-12-369

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Salfinger M, Heifets LB (1988) Determination of pyrazinamide MICs Mycobacterium tuberculosis different pHs by the radiometric method. Antimicrob Agents Chemother 32:1002–1004. https://doi.org/10.1128/aac.32.7.1002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Scarparo C, Ricordi P, Ruggiero G, Piccoli P (2004) Evaluation of the fully automated Bactec MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide, streptomycin, isoniazid, rifampin, and ethambutol and comparison with the radiometric Bactec 460TB method. J Clin Microbiol 42:1109–1114. https://doi.org/10.1128/jcm.42.3.1109-1114.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Siddiqi S, Ahmed A, Asif S, Behera D, Javaid M, Jani J, Jyoti A, Mahatre R, Mahto D, Richter E, Rodrigues C, Visalakshi R, Rüsch-Gerdes S (2012) Direct drug susceptibility testing of Mycobacterium tuberculosis for rapid detection of multidrug resistance using the Bactec MGIT 960 system: a multicenter study. J Clin Microbiol 50:435–440. https://doi.org/10.1128/JCM.05188-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Simons SO, van Soolingen D (2011) Drug susceptibility testing for optimizing tuberculosis treatment. Curr Pharm Des 17:2863–2874. https://doi.org/10.2174/138161211797470255

    CAS  Article  PubMed  Google Scholar 

  37. Tortoli E, Benedetti M, Fontanelli A, Simonetti MT (2002) Evaluation of automated Bactec MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to four major anti-tuberculosis drugs: comparison with the radiometric BACTEC 460TB method and the agar plate method of proportion. J Clin Microbiol 40:607–610. https://doi.org/10.1128/jcm.40.2.607-610.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. World Health Organization (2014) High-priority target product profiles for new tuberculosis diagnostics: report of a consensus meeting. World Health Organization, Geneva. https://www.who.int/tb/publications/tpp_report/en/. Accessed 13 January 2021

  39. World Health Organization (2019) WHO consolidated guidelines on drug-resistant tuberculosis treatment, World Health Organization, Geneva. https://www.who.int/tb/publications/2019/consolidated-guidelines-drug-resistant-TB-treatment/en/ ac. Accessed 13 January 2021

  40. World Health Organization (2020) Global tuberculosis report 2020, World Health Organization, Geneva. https://www.who.int/tb/publications/global_report/en/. Accessed 13 January 2021

  41. Zhang Y, Mitchison D (2003) The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis 7:6–21

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to technical members Mr. Seung-Mo Kim, Mrs. So-Yeon Park, and Mr. Jeong Seong Yang.

Funding

This study was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI16C1567).

Author information

Affiliations

Authors

Contributions

H.K. designed the study, performed the experiments, analyzed the data and protocol, and wrote the manuscript. S. S. revised the manuscript. S.L. drafted the manuscript. E.J., S.K., H.K., and E-G. K. performed the experiments and analyzed the data. S.K. and E-G. K. designed CAT and QMAC systems.

Corresponding authors

Correspondence to Hyejin Kim or Soyoun Shin.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

All authors have read and approved the final version.

Conflict of interest

Sangyeop Lee, EunJi Jo, Haeun Kim, Suyeoun Kim, and Sunghoon Kwon at the time of manuscript submission were employed at QuantaMatrix, Inc., which commercializes the DST technology. They have equity interests in QuantaMatrix, Inc.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 321 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, S., Jo, E. et al. Performance of QuantaMatrix Microfluidic Agarose Channel system integrated with mycobacteria growth indicator tube liquid culture. Appl Microbiol Biotechnol 105, 6059–6072 (2021). https://doi.org/10.1007/s00253-021-11446-0

Download citation

Keywords

  • QMAC system
  • Mycobacterium tuberculosis
  • Phenotypic drug susceptibility testing
  • MGIT-DST