Skip to main content

Advertisement

Log in

Robotics for enzyme technology: innovations and technological perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The use of robotics in the life science sector has created a considerable and significant impact on a wide range of research areas, including enzyme technology due to their immense applications in enzyme and microbial engineering as an indispensable tool in high-throughput screening applications. Scientists are experiencing the advanced applications of various biological robots (nanobots), fabricated based on bottom-up or top-down approaches for making nanotechnology scaffolds. Nanobots and enzyme-powered nanomotors are particularly attractive because they are self-propelled vehicles, which consume biocompatible fuels. These smart nanostructures are widely used as drug delivery systems for the efficient treatment of various diseases. This review gives insights into the escalating necessity of robotics and nanobots and their ever-widening applications in enzyme technology, including biofuel production and biomedical applications. It also offers brief insights into high-throughput robotic platforms that are currently being used in enzyme screening applications for monitoring and control of microbial growth conditions.

Key points

Robotics and their applications in biotechnology are highlighted.

Robotics for high-throughput enzyme screening and microbial engineering are described.

Nanobots and enzyme-powered nanomotors as controllable drug delivery systems are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Code availability

Not applicable.

References

  • Abdelmohsen LK, Nijemeisland M, Pawar GM, Janssen GJ, Nolte RJ, van Hest JC, Wilson DA (2016) Dynamic loading and unloading of proteins in polymeric stomatocytes: formation of an enzyme-loaded supramolecular nanomotor. ACS Nano 10(2):2652–2660

  • Arbige MV, Shetty JK, Chotani GK (2019) Industrial enzymology: the next chapter. Trends Biotechnol 37(12):1355–1366

    CAS  PubMed  Google Scholar 

  • Arnone JT (2020) Genomic considerations for the modification of Saccharomyces cerevisiae for biofuel and metabolite biosynthesis. Microorganisms 8(3):321

    CAS  PubMed Central  Google Scholar 

  • Basheer SM, Chellappan S (2017) Enzyme engineering. In: Bioresources and bioprocess in biotechnology. Springer, Singapore, pp 151–168

    Google Scholar 

  • Beneyton T, Thomas S, Griffiths AD, Nicaud JM, Drevelle A, Rossignol T (2017) Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica. Microb Cell Factories 16(1):18

  • Bunzel HA, Garrabou X, Pott M, Hilvert D (2018) Speeding up enzyme discovery and engineering with ultrahigh-throughput methods. Curr Opin Struct Biol 48:149–156

    CAS  PubMed  Google Scholar 

  • Cao Y, Mu H, Guo J, Liu H, Zhang R, Liu W, Liu H (2020) Metabolic engineering of Escherichia coli for the utilization of ethanol. J Biol Res (Thessalon) 27(1):1

    CAS  Google Scholar 

  • Chang C, Sustarich J, Bharadwaj R, Chandrasekaran A, Adams PD, Singh AK (2013) Droplet-based microfluidic platform for heterogeneous enzymatic assays. Lab Chip 13(9):1817–1822

    CAS  PubMed  Google Scholar 

  • Chen XZ, Hoop M, Shamsudhin N, Huang T, Özkale B, Li Q, Pané S (2017) Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv Mater 29(8):1605458

    Google Scholar 

  • Chen Z, Xia T, Zhang Z, Xie S, Wang T, Li X (2019) Enzyme-powered Janus nanomotors launched from intratumoral depots to address drug delivery barriers. Chem Eng J 375:122109

    CAS  Google Scholar 

  • Chronopoulou EG, Ataya F, Labrou NE (2018) A microplate-based platform with immobilized human glutathione transferase A1-1 for high-throughput screening of plant-origin inhibitors. Curr Pharm Biotechnol 19(11):925–931

    CAS  PubMed  Google Scholar 

  • Diefenbach XW, Farasat I, Guetschow ED, Welch CJ, Kennedy RT, Sun S, Moore JC (2018) Enabling biocatalysis by high-throughput protein engineering using droplet microfluidics coupled to mass spectrometry. ACS Omega 3(2):1498–1508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit M, Liu H, Luo J, Shukla P (2020) Effluents detoxification from pulp and paper industry using microbial engineering and advanced oxidation techniques. J Hazard Mater 398:122998

    CAS  Google Scholar 

  • Dörr M, Fibinger MP, Last D, Schmidt S, Santos-Aberturas J, Böttcher D, Bornscheuer UT (2016) Fully automatized high-throughput enzyme library screening using a robotic platform. Biotechnol Bioeng 113(7):1421–1432

    PubMed  Google Scholar 

  • Fleischer H, Baumann D, Joshi S, Chu X, Roddelkopf T, Klos M, Thurow K (2018) Analytical measurements and efficient process generation using a dual–arm robot equipped with electronic pipettes. Energies 11(10):2567

    Google Scholar 

  • Gupta SK, Srivastava SK, Sharma A, Nalage VH, Salvi D, Kushwaha H, Chitnis NB, Shukla P (2017) Metabolic engineering of CHO cells for the development of a robust protein production platform. PLoS One 12(8):e0181455. https://doi.org/10.1371/journal.pone.0181455

  • Haby B, Hans S, Anane E, Sawatzki A, Krausch N, Neubauer P, Cruz Bournazou MN (2019) Integrated robotic mini bioreactor platform for automated, parallel microbial cultivation with online data handling and process control. SLAS Technol 24(6):569–582

    CAS  PubMed  Google Scholar 

  • Hägele M, Nilsson K, Pires JN, Bischoff R (2016) Industrial robotics. In: Springer handbook of robotics. Springer, Cham, pp 1385–1422

    Google Scholar 

  • Halder A, Sun Y (2019) Biocompatible propulsion for biomedical micro/nano robotics. Biosens Bioelectron 139:111334

    CAS  PubMed  Google Scholar 

  • Hortelão AC, Carrascosa R, Murillo-Cremaes N, Patiño T, Sánchez S (2018) Targeting 3D bladder cancer spheroids with urease-powered nanomotors. ACS Nano 13(1):429–439

    PubMed  Google Scholar 

  • Hughes SR, Butt TR, Bartolett S, Riedmuller SB, Farrelly P (2011) Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications. JALA 16(4):292–307

    CAS  PubMed  Google Scholar 

  • Irais CM, María-de-la-Luz SG, Dealmy DG, Agustina RM, Nidia CH, Mario-Alberto RG, Luis-Benjamín SG, María-del-Carmen VM, David PE (2020) Plant phenolics as pathogen-carrier immunogenicity modulator haptens. Curr Pharm Biotechnol 21(10):897–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques P, Béchet M, Bigan M, Caly D, Chataigné G, Coutte F, Phalip V (2017) High-throughput strategies for the discovery and engineering of enzymes for biocatalysis. Bioprocess Biosyst Eng 40(2):161–180

    CAS  PubMed  Google Scholar 

  • Jana BA, Shinde U, Wadhwani A (2020) Preparation of enzyme based polymeric biomimetic nanoparticle for the controlled release of insulin. Sens Biosens Res:100342. https://doi.org/10.1016/j.sbsr.2020.100342

  • Jimenez-Falcao S, Joga N, García-Fernández A, Lorente AL, Torres D, De Luis B, Villalonga R (2019) Janus nanocarrier powered by bi-enzymatic cascade system for smart delivery. J Mater Chem B 7(30):4669–4676

    CAS  PubMed  Google Scholar 

  • Kim HS, Hsu SC, Han SI, Thapa HR, Guzman AR, Browne DR, Han A (2017) High-throughput droplet microfluidics screening platform for selecting fast-growing and high lipid-producing microalgae from a mutant library. Plant Direct 1(3):e00011

    PubMed  PubMed Central  Google Scholar 

  • Koppolu V, Vasigala VK (2016) Role of Escherichia coli in biofuel production. Microbiol Insights 9:MBI-S10878. https://doi.org/10.4137/MBI.S10878

    Article  Google Scholar 

  • Kovačević G, Ostafe R, Balaž AM, Fischer R, Prodanović R (2019) Development of GFP-based high-throughput screening system for directed evolution of glucose oxidase. J Biosci Bioeng 127(1):30–37

    PubMed  Google Scholar 

  • Kumar V, Kumar A, Chhabra D, Shukla P (2019) Improved biobleaching of mixed hardwood pulp and process optimization using novel GA-ANN and GA-ANFIS hybrid statistical tools. BioresourTechnol 271:274–282

    CAS  Google Scholar 

  • Labrou NE (2010) Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pept Sci 11(1):91–100

    CAS  PubMed  Google Scholar 

  • Leferink NG, Dunstan MS, Hollywood KA, Swainston N, Currin A, Jervis AJ, Scrutton NS (2019) An automated pipeline for the screening of diverse monoterpene synthase libraries. Sci Rep 9(1):1–12

    Google Scholar 

  • Li M, van Zee M, Riche CT, Tofig B, Gallaher SD, Merchant SS, Di Carlo D (2018) A Gelatin Microdroplet Platform for high-throughput sorting of hyperproducing single-cell-derived microalgal clones. Small 14(44):1803315

    Google Scholar 

  • Li C, Gao L, Zhang Y, Simpson BK (2019) Preparation of quercetin loaded microparticles and their antitumor activity against human lung cancer cells (A549) in vitro. Curr Pharm Biotechnol 20(11):945–954

    CAS  PubMed  Google Scholar 

  • Lin WR, Lai YC, Sung PK, Tan SI, Chang CH, Chen CY, Ng IS (2018) Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae. J Taiwan Inst Chem Eng 93:131–141

    CAS  Google Scholar 

  • Llopis-Lorente A, García-Fernández A, Lucena-Sánchez E, Díez P, Sancenón F, Villalonga R, Martínez-Máñez R (2019) Stimulus-responsive nanomotors based on gated enzyme-powered Janus Au–mesoporous silica nanoparticles for enhanced cargo delivery. Chem Commun 55(87):13164–13167

    CAS  Google Scholar 

  • Longwell CK, Labanieh L, Cochran JR (2017) High-throughput screening technologies for enzyme engineering. Curr Opin Biotechnol 48:196–202

    CAS  PubMed  Google Scholar 

  • Luo M, Feng Y, Wang T, Guan J (2018) Micro-/nanorobots at work in active drug delivery. Adv Funct Mater 28(25):1706100

    Google Scholar 

  • Luo M, Li S, Wan J, Yang C, Chen B, Guan J (2020) Enhanced Propulsion of urease-powered micromotors by multilayered assembly of ureases on Janus magnetic microparticles. Langmuir 36. https://doi.org/10.1021/acs.langmuir.9b03315

  • Ma X, Hortelão AC, Patiño T, Sánchez S (2016) Enzyme catalysis to power micro/nanomachines. ACS Nano 10(10):9111–9122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majidian P, Tabatabaei M, Zeinolabedini M, Naghshbandi MP, Chisti Y (2018) Metabolic engineering of microorganisms for biofuel production. Renew Sust Energ Rev 82:3863–3885

    CAS  Google Scholar 

  • Mallajosyula VV, Swaroop S, Varadarajan R (2020) Influenza hemagglutinin head domain mimicry by rational design. Protein J 39(5):434–448

    PubMed  Google Scholar 

  • Mandeep, Gupta GK, Shukla P (2020) Enzyme engineering techniques for biotechnological applications. In: Shukla P (eds) Microbial Enzymes and Biotechniques. Springer, Singapore, pp 235–249. https://doi.org/10.1007/978-981-15-6895-4_12 

  • Mandeep, Liu H, Shukla P (2021) Synthetic biology and biocomputational approaches for improving microbial endoglucanases toward their innovative applications. ACS Omega 6:6055–6063. https://doi.org/10.1021/acsomega.0c05744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maseko SB, Govender D, Govender T, Naicker T, Lin J, Maguire GE, Kruger HG (2019) Optimized procedure for recovering HIV-1 protease (C-SA) from inclusion bodies. Protein J 38(1):30–36

    CAS  PubMed  Google Scholar 

  • Mazurenko S, Prokop Z, Damborsky J (2019) Machine learning in enzyme engineering. ACS Catal 10(2):1210–1223

    Google Scholar 

  • Michael S, Auld D, Klumpp C, Jadhav A, Zheng W, Thorne N, Austin CP, Inglese J, Simeonov A (2008) A robotic platform for quantitative high-throughput screening. Assay Drug Dev Technol 6(5):637–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi F, Nezafat N, Berenjian A, Negahdaripour M, Zamani M, Ghoshoon MB, Morowvat MH, Hemmati S, Ghasemi Y (2018) Extracellular production of a potent and chemically resistant nattokinase in immobilized Escherichia coli using response surface methodology. Curr Pharm Biotechnol 19(11):856–868

    CAS  PubMed  Google Scholar 

  • Mühlmann M, Kunze M, Ribeiro J, Geinitz B, Lehmann C, Schwaneberg U, Büchs J (2017) Cellulolytic RoboLector–towards an automated high-throughput screening platform for recombinant cellulase expression. J Biol Eng 11(1):1

    PubMed  PubMed Central  Google Scholar 

  • Murata S, Konagaya A, Kobayashi S, Saito H, Hagiya M (2013) Molecular robotics: a new paradigm for artifacts. New Generat Comput 31(1):27–45

  • Nabil-Adam A, Shreadah MA, Abd El-Moneam NM, El-Assar SA (2020) Marine algae of the genus Gracilaria as multi products source for different biotechnological and medical applications. Recent Pat Biotechnol 14(3):203–228

    CAS  PubMed  Google Scholar 

  • Ortiz-Rivera I, Mathesh M, Wilson DA (2018) A Supramolecular approach to nanoscale motion: polymersome-based self-propelled nanomotors. Acc Chem Res 51(9):1891–1900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patiño T, Arqué X, Mestre R, Palacios L, Sánchez S (2018) Fundamental aspects of enzyme-powered micro-and nanoswimmers. Acc Chem Res 51(11):2662–2671

    PubMed  Google Scholar 

  • Peng L, Fu D, Chu H, Wang Z, Qi H (2020) Biofuel production from microalgae: a review. Environ Chem Lett 18:285–297. https://doi.org/10.1007/s10311-019-00939-0

  • Perperopoulou F, Pouliou F, Labrou NE (2018) Recent advances in protein engineering and biotechnological applications of glutathione transferases. Crit Rev Bioechnol 38(4):511–528

    CAS  Google Scholar 

  • Platis D, Labrou NE (2008) Chemical and genetic engineering strategies to improve the potency of pharmaceutical proteins and enzymes. Curr Med Chem 15(19):1940–1955

    CAS  PubMed  Google Scholar 

  • Plutnar J, Pumera M (2019) Chemotactic micro- and nanodevices. Angew Chem Int Edit 58(8):2190–2196

    CAS  Google Scholar 

  • Regnault C, Dheeman DS, Hochstetter A (2018) Microfluidic devices for drug assays. High-throughput 7(2):18

    PubMed Central  Google Scholar 

  • Rengel R, Smith RT, Haslam RP, Sayanova O, Vila M, León R (2018) Overexpression of acetyl-CoA synthetase (ACS) enhances the biosynthesis of neutral lipids and starch in the green microalga Chlamydomonas reinhardtii. Algal Res 31:183–193

    Google Scholar 

  • Saad MG, Dosoky NS, Khan MS, Zoromba MS, Mekki L, El-Bana M, Shafik HM (2019) High-throughput screening of Chlorella vulgaris growth kinetics inside a droplet-based microfluidic device under irradiance and nitrate stress conditions. Biomolecules 9(7):276

    CAS  PubMed Central  Google Scholar 

  • Saini DK, Yadav D, Pabbi S, Chhabra D, Shukla P (2020) Phycobiliproteins from Anabaena variabilis CCC421 and its production enhancement strategies using combinatory evolutionary algorithm approach. Bioresour Technol 309:123347

    Google Scholar 

  • Schattling PS, Ramos-Docampo MA, Salgueiriño V, Städler B (2017) Double-fueled janus swimmers with magnetotactic behavior. ACS Nano 11(4):3973–3983

  • Scheel M, Lütke-Eversloh T (2013) New options to engineer biofuel microbes: development and application of a high-throughput screening system. Metab Eng 17:51–58

    CAS  PubMed  Google Scholar 

  • Seo JS, Yang HS, Jung S, Kang CS, Jang S, Kim DH (2018) Effect of reducing assistance during robot-assisted gait training on step length asymmetry in patients with hemiplegic stroke: a randomized controlled pilot trial. Medicine 97(33):e11792.https://doi.org/10.1097/MD.0000000000011792

  • Shahriari M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M (2019) Enzyme responsive drug delivery systems in cancer treatment. J Control Release 308:172–189

    CAS  PubMed  Google Scholar 

  • Shukla P (2019) Synthetic biology perspectives of microbial enzymes and their innovative applications. Indian J Microbiol 59(4):401–409

    PubMed  PubMed Central  Google Scholar 

  • Singhal G, Verma V, Bhagyawant SS, Srivastava N (2020) Production of biofuel through metabolic engineering: processing, types, and applications. In: Genetic and metabolic engineering for improved biofuel production from lignocellulosic biomass. Elsevier, pp 155–169

  • Sinha R, Shukla P (2019) Protein engineering for improved health: technological perspectives. Curr Protein Pept Sci 20(9):856–860

    PubMed  Google Scholar 

  • Song L, Zeng AP (2017) Engineering’ cell robots’ for parallel and highly sensitive screening of biomolecules under in vivo conditions. Sci Rep 7(1):1–9

    Google Scholar 

  • Sun J, Mathesh M, Li W, Wilson DA (2019) Enzyme-powered nanomotors with controlled size for biomedical applications. ACS Nano 13(9):10191–10200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang S, Zhang F, Gong H, Wei F, Zhuang J, Karshalev E, Yin L (2020) Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci Robot 5(43):eaba6137. https://doi.org/10.1126/scirobotics.aba6137

  • Tiwari R, Nain L, Labrou NE, Shukla P (2018) Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review. Crit Rev Microbiol 44(2):244–257

    CAS  PubMed  Google Scholar 

  • Unrean P, Champreda V (2017) High-throughput screening and dual feeding fed-batch strategy for enhanced single-cell oil accumulation in Yarrowia lipolytica. Bioenergy Res 10(4):1057–1065

  • Vogel A (2019) Enzyme development technologies. In: Vogel A and May O (eds) Industrial Enzyme Applications. Wiley, VCH Verlag, pp 25–45. https://doi.org/10.1002/9783527813780.ch1_2

  • Wang H, Pumera M (2015) Fabrication of micro/nanoscale motors. Chem Rev 115(16):8704–8735

  • Weng L, Spoonamore JE (2019) Droplet microfluidics-enabled high-throughput screening for protein engineering. Micromachines 10(11):734

    PubMed Central  Google Scholar 

  • Ye L, Yang C, Yu H (2018) From molecular engineering to process engineering: development of high-throughput screening methods in enzyme directed evolution. Appl Microbiol Biotechnol 102(2):559–567

    CAS  PubMed  Google Scholar 

  • Zeng W, Guo L, Xu S, Chen J, Zhou J (2020) High-throughput screening technology in industrial biotechnology. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2020.01.001

  • Zhao X, Gentile K, Mohajerani F, Sen A (2018) Powering motion with enzymes. Acc Chem Res 51(10):2373–2381

    CAS  PubMed  Google Scholar 

Download references

Funding

The infrastructural support from the Department of Science and Technology, New Delhi, Govt. of India, through FIST grant (Grant No. 1196 SR/FST/LS-I/ 2017/4) and Department of Biotechnology, Government of India (Grant no. BT/PR27437/BCE/8/1433/2018). MD acknowledges the Junior Research Fellowship from CSIR, India (Award No.09/382(0211)/2019-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

MD, KP, and DP performed the literature search, collected the data in tables, prepared the figures, and wrote the first draft. PS conceptualized the idea, and PS and NL edited and proofread the manuscript before its submission.

Corresponding author

Correspondence to Pratyoosh Shukla.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, M., Panchal, K., Pandey, D. et al. Robotics for enzyme technology: innovations and technological perspectives. Appl Microbiol Biotechnol 105, 4089–4097 (2021). https://doi.org/10.1007/s00253-021-11302-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11302-1

Keywords

Navigation