Skip to main content
Log in

Peculiarities and systematics of microbial diglycosidases, and their applications in food technology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Diglycosidases are endo-β-glucosidases that hydrolyze the heterosidic linkage of diglycoconjugates, thereby releasing in a single reaction the disaccharide and the aglycone. Plant diglycosidases belong to the glycoside hydrolase family 1 and are associated with defense mechanisms. Microbial diglycosidases exhibit higher diversity—they belong to the families 3, 5, and 55—and play a catabolic role. As diglycoconjugates are widespread in the environments, so are the microbial diglycosidases, which allow their utilization as nutritional source and carbon recycling. In the last 10 years, six microbial diglycosidases have been sequenced, and for two of them, the three-dimensional structure has been elucidated. This knowledge allowed the identification of their diverse phylogenetic origin, and gave insights into the understanding of the substrate specificity. Here, the last advances and the applications of microbial diglycosidases are reviewed.

Key points

Substrate specificity and phylogenetic relationships of diglycosidases are reviewed.

On-going and potential applications of diglycosidases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alessi AM, Bird SM, Bennett JP, Oates NC, Li Y, Dowle AA, Polikarpov I, Young JPW, McQueen-Mason SJ, Bruce NC (2017) Revealing the insoluble metasecretome of lignocellulose-degrading microbial communities. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  • Bassanini I, Kapešová J, Petrásková L, Pelantová H, Markošová K, Rebroš M, Valentová K, Kotik M, Káňová K, Bojarová P, Cvačka J, Turková L, Ferrandi EE, Bayout I, Riva S, Křen V (2019) Glycosidase-Catalyzed synthesis of glycosyl esters and phenolic glycosides of aromatic acids. ASC 361(11):2627–2637

    CAS  Google Scholar 

  • Breccia J, Mazzaferro L, Piñuel L, Minig M (2012) Argentinean patent provisional application no. AR099341A1. Instituto Nacional de la Propiedad Industrial, Argentina.

  • Breccia JD, Weiz G, Molejón MI, Mazzaferro LS, Mazzolini Rizzo GD, Malvacini M (2020) U.S. Patent Provisional Application No. US 63/083,430.

  • Brodsky K, Kutý M, Pelantová H, Cvačka J, Rebroš M, Kotik M, Smatanová IK, Křen V, Bojarová P (2020) Dual substrate specificity of the rutinosidase from Aspergillus niger and the role of its substrate tunnel. Int J Mol Sci 21(16):5671

    Article  CAS  Google Scholar 

  • Chomel M, Guittonny‐Larchevêque M, Fernandez C, Gallet C, DesRochers A, Paré D, Jackson BG, Baldy V (2016) Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. J Ecol 104(6):1527–1541

  • Couturier M, Ladeveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, Villares A, Cathala B, Chaspoul F, Frandsen KE, Labourel A, Herpoël-Gimbert I, Grisel S, Haon M, Lenfant N, Rogniaux H, Ropartz D, Davies GJ, Rosso MN, Walton PH, Henrissat B, Berrin JG (2018) Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol 14(3):306–310

    Article  CAS  Google Scholar 

  • Dos Santos CL, Pedersoli WR, Antoniêto ACC, Steindorff AS, Silva-Rocha R, Martinez-Rossi NM, Rossi A, Andrew Brown N, Goldman GH, Faça VM, Persinoti GF, Silva RN (2014) Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnol Biofuels 7(1):41

  • Gachon CM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10(11):542–549

    Article  CAS  Google Scholar 

  • Hirano K, Kurosaki M, Nihei S, Hasegawa H, Shinoda S, Haruki M, Hirano N (2016) Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass. Sci Rep 6:35709

    Article  CAS  Google Scholar 

  • Ishikawa M, Kawasaki M, Shiono Y, Koseki T (2018) A novel Aspergillus oryzae diglycosidase that hydrolyzes 6-O-α-l-rhamnosyl-β-d-glucoside from flavonoids. Appl Microbiol Biotechnol 102(7):3193–3201

    Article  CAS  Google Scholar 

  • Kato Y, Matsushita J, Kubodera T, Matsuda K (1985) A novel enzyme producing isoprimeverose from oligoxyloglucans of Aspergillus oryzae. J Biochem 97(3):801–810

    Article  CAS  Google Scholar 

  • Kim BH, Park SK (2017) Enhancement of volatile aromatic compounds in black raspberry wines via enzymatic treatment. J Inst Brew 123(2):277–283

    Article  CAS  Google Scholar 

  • Koseki T, Ishikawa M, Kawasaki M, Shiono Y (2018) β-Diglycosidases from microorganisms as industrial biocatalysts: biochemical characteristics and potential applications. Appl Microbiol Biotechnol 102(20):8717–8723

    Article  CAS  Google Scholar 

  • Makabe K, Hirota R, Shiono Y, Tanaka Y, Koseki T (2020) Biochemical and structural investigation of rutinosidase from Aspergillus oryzae. Appl Environ Microbiol 87. https://doi.org/10.1128/AEM.02438-20

  • Manzanares P, Vallés S, Ramòn D, Orejas M (2007) α-L-rhamnosidases: Old and New Insights. In: α-l-Rhamnosidase: old and new insights. Indust, Enzymes. https://doi.org/10.1007/1-4020-5377-0_8

    Chapter  Google Scholar 

  • Mastihuba V, Potocká EK, Uhliariková I, Kis P, Kozmon S, Mastihubová M (2019) Reaction mechanism of β-apiosidase from Aspergillus aculeatus. Food Chem 274:543–546

    Article  CAS  Google Scholar 

  • Matsuzawa T, Mitsuishi Y, Kameyama A, Yaoi K (2016) Identification of the gene encoding isoprimeverose producing oligoxyloglucan hydrolase in Aspergillus oryzae. J Biol Chem 291(10):5080–5087

    Article  CAS  Google Scholar 

  • Mazzaferro LS, Breccia JD (2012) Quantification of hesperidin in citrus-based foods using a fungal diglycosidase. Food Chem 134(4):2338–2344

    Article  CAS  Google Scholar 

  • Mazzaferro LS, Piñuel L, Erra-Balsells R, Giudicessi SL, Breccia JD (2012) Transglycosylation specificity of Acremonium sp. α-rhamnosyl-β-glucosidase and its application to the synthesis of the new fluorogenic substrate 4-methylumbelliferyl rutinoside. Carbohydr Res 347(1):69–75

    Article  CAS  Google Scholar 

  • Mazzaferro LS, Weiz G, Braun L, Kotik M, Pelantová H, Křen V, Breccia JD (2019) Enzyme-mediated transglycosylation of rutinose (6-O-α-l-rhamnosyl-d-glucose) to phenolic compounds by a diglycosidase from Acremonium sp. DSM 24697. Biotechnol Appl Biochem 66(1):53–59

    Article  CAS  Google Scholar 

  • Mazzaferro LS, Breccia JD (2011) Functional and biotechnological insights into diglycosidases. Biocatal Biotransfor 29(4):103–112

  • Mazzaferro L, Piñuel L, Minig M, Breccia JD (2010) Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid β-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria. Arch Microbiol 192(5):383–393

  • Minig M, Mazzaferro LS, Erra-Balsells R, Petroselli G, Breccia JD (2011) α-Rhamnosyl-β-glucosidase-catalyzed reactions for analysis and biotransformation of plant-based foods. J Agric Food Chem 59(20):11238–11243

    Article  CAS  Google Scholar 

  • Molejon MI, Weiz G, Tellechea JI (2019) Breccia JD & Vaccaro MI (2019) Antitumoral effects of glycoconjugates on primary cultures of human pancreatic cancer cells obtained by echoendoscopy. Acta Gastroenterol Latinoam 49(3):208–221

    Google Scholar 

  • Neher BD, Mazzaferro LS, Kotik M, Oyhenart J, Halada P, Křen V, Breccia JD (2016) Bacteria as source of diglycosidase activity: Actinoplanes missouriensis produces 6-O-α-l-rhamnosyl-β-d-glucosidase active on flavonoids. Appl Microbiol Biotechnol 100(7):3061–3070

    Article  CAS  Google Scholar 

  • Ni Y, Zhang HJ, Li D, Wang DW (2019) Enzymatic production of steviol using a commercial β-glucosidase and preparation of its inclusion complex with γ-CD. J Incl Phenom Macrocycl. Chem 93(3-4):193–201

    Google Scholar 

  • Pachl P, Kapešová J, Brynda J, Biedermannová L, Pelantová H, Bojarová P, Křen V, Řezáčová P, Kotik M (2020) Rutinosidase from Aspergillus niger: Crystal structure and insight into the enzymatic activity. FEBS J 287:3315–3327. https://doi.org/10.1111/febs.15208

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Han J, Fukuda H, Mikami S (2018) Enhancing monoterpene alcohols in sweet potato shochu using the diglycoside-specific β-primeverosidase. J Biosci Bioeng 125(2):218–223

    Article  CAS  Google Scholar 

  • Schmidt S, Rainieri S, Witte S, Matern U, Martens S (2011) Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Appl Environ Microbiol 77(5):1751–1757

    Article  CAS  Google Scholar 

  • Segato F, Damásio AR, de Lucas RC, Squina FM, Prade RA (2014) Genomics review of holocellulose deconstruction by aspergilli. MMBR 78(4):588–613

    Article  Google Scholar 

  • Šimčíková D, Kotik M, Weignerová L, Halada P, Pelantová H, Adamcová K, Křen V (2015) α-l-Rhamnosyl-β-d-glucosidase (rutinosidase) from Aspergillus niger: characterization and synthetic potential of a novel diglycosidase. ASC 357(1):107–117

    Google Scholar 

  • Tsuruhami K, Mori S, Amarume S, Saruwatari S, Murata T, Hirakake J, Sakata H, Usui T (2006a) Isolation and characterization of a β-primeverosidase-like enzyme from Penicillium multicolor. Biosci Biotechnol Biochem 70(3):691–698

    Article  CAS  Google Scholar 

  • Tsuruhami K, Toumoto A, Goto M & Koikeda S (2006b) U.S. Patent No. 7,118,895. Washington, DC: U.S. Patent and Trademark Office.

  • Tsuruhami K, Mori S & Koide Y (2011) U.S. Patent No. 7,998,721. Washington, DC: U.S. Patent and Trademark Office.

  • Tsuruhami K, Mori S, Amarume S, Saruwatari S, Murata T, Hirakake J, Sakata K, Usui T (2006) Isolation and characterization of a β-primeverosidaselike enzyme from Penicillium multicolor. Biosci Biotechnol Biochem, 70(3), 691–698

  • Weiz G, Mazzaferro LS, Kotik M, Neher BD, Halada P, Křen V, Breccia JD (2019) The flavonoid degrading fungus Acremonium sp. DSM 24697 produces two diglycosidases with different specificities. Appl Microbiol Biotechnol 103(23-24):9493–9504

    Article  CAS  Google Scholar 

  • Wilhelm RC, Singh R, Eltis LD, Mohn WW (2019) Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13(2):413–429

    Article  CAS  Google Scholar 

  • Yamamoto S, Okada M, Usui T, Sakata K (2002) Isolation and characterization of a β-primeverosidase-like endo-manner β-glycosidase from Aspergillus fumigatus AP-20. Biosci Biotechnol Biochem 66(4):801–807

    Article  CAS  Google Scholar 

  • Yamamoto S, Okada M, Usui T, Sakata K, Toumoto A & Tsuruhami K (2006) U.S. Patent No. 7,109,014. Washington, DC: U.S. Patent and Trademark Office.

  • Yaoi K, Hiyoshi A, Mitsuishi Y (2007) Screening, purification and characterization of a prokaryotic isoprimeverose producing oligoxyloglucan hydrolase from Oerskovia sp. Y1. J Appl Glycosci 54(2):91–94

    Article  CAS  Google Scholar 

Download references

Funding

The National University of La Pampa (UNLPam), the National Council of Scientific and Technical Research (CONICET), and The National Agency supported this work for Science and Technology Promotion (ANPCyT) of Argentina, and are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

MB, JDB, and LSM conceived and designed the work, and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Laura S. Mazzaferro.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baglioni, M., Breccia, J.D. & Mazzaferro, L.S. Peculiarities and systematics of microbial diglycosidases, and their applications in food technology. Appl Microbiol Biotechnol 105, 2693–2700 (2021). https://doi.org/10.1007/s00253-021-11219-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11219-9

Keywords

Navigation