Skip to main content

Advertisement

Log in

Prebiotics in vitro digestion by gut microbes, products’ chemistry, and clinical relevance

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Several investigations have elucidated the chemistry of prebiotics based on their fermentation by the colonic microbes, which release metabolites that are often implicated in host’s gut and whole body health. The present study aims at providing a preview of prebiotics and their interactions with the colonic microbiota for a slow fermentation in vitro. The metabolites produced, mainly short chain fatty acids (SCFA), their chemistry, interactions with prebiotic structural mechanisms, and beneficial impacts on the host were also reported. The present review further considers the clinical relevance of the SCFAs produced. It was deduced that the physicochemical properties of prebiotics would influence their colonic fermentation rate, microbial choice, and growth as well as SCFA type and ratios. This will in turn be of utmost clinical significance.

Key points

• Prebiotics affect the composition of gut microorganisms.

• The chemistry of short chain fatty acids are described.

• Microbial and clinical applications of SCFAs were provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Available upon request

References

  • Abrams SA, Griffin IJ, Hawthorne KM, Ellis KJ (2007) Effect of prebiotic supplementation and calcium intake on body mass index. J Pedtr 151(3):293–298

    CAS  Google Scholar 

  • Alonso VR, Guarner F (2013) Linking the gut microbiota to human health. Br J Nutr 109(S2):S21–S26

    Google Scholar 

  • Arcila JA, Rose DJ (2015) Repeated cooking and freezing of whole wheat flour increases resistant starch with beneficial impacts on in vitro fecal fermentation properties. J Funct Foods 12:230–236

    CAS  Google Scholar 

  • Arora T, Sharma R (2011) Fermentation potential of the gut microbiome: implications for energy homeostasis and weight management. Nutr Rev 69:99–106

    PubMed  Google Scholar 

  • Ashaolu TJ (2020a) Soy bioactive peptides and the gut microbiota modulation. Appl Microbiol Biotechnol 104:9009–9017

    CAS  PubMed  Google Scholar 

  • Ashaolu TJ (2020b) Immune boosting functional foods and their mechanisms: a critical evaluation of probiotics and prebiotics. Biomed Pharmacother 130:110625

    CAS  PubMed  Google Scholar 

  • Ashaolu TJ, Yupanqui CT (2017) Suppressive activity of enzymatically-educed soy protein hydrolysates on degranulation in IgE-antigen complex-stimulated RBL-2H3 cells. Funct Foods Health Dis 7(7):545–561

    CAS  Google Scholar 

  • Ashaolu TJ, Yantiam N, Yupanqui CT (2017) Immunomodulatory effects of pepsin-educed soy protein hydrolysate in rats and murine cells. Funct Foods Health Dis 7(11):889–900

    CAS  Google Scholar 

  • Ashaolu TJ, Saibandith B, Yupanqui CT, Wichienchot S (2019) Human colonic microbiota modulation and branched chain fatty acids production affected by soy protein hydrolysate. Int J Food Sci Technol 54(1):141–148

    CAS  Google Scholar 

  • Ashaolu TJ, Ashaolu JO, Adeyeye SA (2020) Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review. J Appl Microbiol. https://doi.org/10.1111/jam.14843

  • Bae CH, Park MS, Ji GE, Park HD (2013) Effects of phosphorylated cross-linked resistant corn starch on the intestinal microflora and short chain fatty acid formation during in vitro human fecal batch culture. Food Sci Biotechnol 22(6):1649–1654

    CAS  Google Scholar 

  • Bindels LB, Porporato P, Dewulf EM, Verrax J, Neyrinck AM, Martin JC, Scott KP, Calderon PB, Feron O, Muccioli GG, Sonveaux P (2012) Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. British J Cancer 107(8):1337–1344

    CAS  Google Scholar 

  • Cani PD, Dewever C, Delzenne NM (2004) Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. British J Nutr 92(3):521–526

    CAS  Google Scholar 

  • Chambers ES, Morrison DJ, Frost G (2015) Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc 74(3):328–336

    CAS  PubMed  Google Scholar 

  • Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR (2017) Fiber-utilizing capacity varies in Prevotella-versus Bacteroides-dominated gut microbiota. Sci Rep 7(1):1–7

    Google Scholar 

  • Conterno L, Fava F, Viola R, Tuohy KM (2011) Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr 6(3):241–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deehan EC, Walter J (2016) The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol Metab 27(5):239–242

    CAS  PubMed  Google Scholar 

  • Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ (2012) The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 48:612–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira-Lazarte A, Kachrimanidou V, Villamiel M, Rastall RA, Moreno FJ (2018) In vitro fermentation properties of pectins and enzymatic-modified pectins obtained from different renewable bioresources. Carbohydr Polym 199:482–491

    CAS  PubMed  Google Scholar 

  • Freeland KR, Wolever TM (2010) Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-α. British J Nutr 103(3):460–466

    CAS  Google Scholar 

  • Freeland KR, Wilson C, Wolever TM (2010) Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. British J Nutr 103(1):82–90

    CAS  Google Scholar 

  • Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547

    CAS  PubMed  Google Scholar 

  • Gibson GR, Beatty ER, Wang XIN, Cummings JH (1995) Selective stimulation of Bifidobacteria in the human colon by oligofructose and inulin. Gastroenterol 108(4):975–982

    CAS  Google Scholar 

  • Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh G, Macfarlane S (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 7(1):1–19

    Google Scholar 

  • Hague A, Elder DJE, Hicks DJ, Paraskeva C (1995) Apoptosis in colorectal tumor cells: induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int J Cancer 60:400–406

    CAS  PubMed  Google Scholar 

  • Hamaker BR, Tuncil YE (2014) A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol 426(23):3838–3850

    CAS  PubMed  Google Scholar 

  • Hamer HM, Jonkers DM, Renes IB, Vanhoutvin SA, Kodde A, Troost FJ, Venema K, Brummer RJ (2010) Butyrate enemas do not affect human colonic MUC2 and TFF3 expression. Eur J Gastroenterol Hepatol 22:113–1140

    Google Scholar 

  • Hijowa E, Chmelarova A (2007) Short chain fatty acids and colonic health. Bratisl Lek Listy 108:354–358

    Google Scholar 

  • Holscher HD (2017) Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8(2):172–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini E, Grootaert C, Verstraete W, Van de Wiele T (2011) Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev 69(5):245–258

    PubMed  Google Scholar 

  • Jonathan MC, van den Borne JJ, van Wiechen P, da Silva CS, Schols HA, Gruppen H (2012) In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans. Food Chem 133(3):889–897

    CAS  Google Scholar 

  • Kaur N, Gupta AK (2002) Applications of inulin and oligofructose in health and nutrition. J Biosci 27(7):703–714

    CAS  PubMed  Google Scholar 

  • King DE, Mainous AG III, Lambourne CA (2012) Trends in dietary fiber intake in the United States, 1999-2008. J Acad Nutr Diet 112(5):642–648

    PubMed  Google Scholar 

  • Knauf C, Cani PD, Perrin C, Iglesias MA, Maury JF, Bernard E, Girard J (2005) Brain glucagon-like peptide–1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 115(12):3554–3563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotani A, Miyaguchi Y, Kohama M, Ohtsuka T, Shiratori T, Kusu F (2009) Determination of short-chain fatty acids in rat and human feces by high-performance liquid chromatography with electrochemical detection. Anal Sci 25(8):1007–1011

    CAS  PubMed  Google Scholar 

  • Langlands SJ, Hopkins MJ, Coleman N, Cummings JH (2004) Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut 53(11):1610–1616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levrat MA, Rémésy C, Demigné C (1991) High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr 121(11):1730–1737

    CAS  PubMed  Google Scholar 

  • Li CJ, Elsasser TH (2005) Butyrate-induced apoptosis and cell cycle arrest in bovine kidney epithelial cells: involvement of caspase and proteasome pathways. J Anim Sci 83:89–97

    CAS  PubMed  Google Scholar 

  • Li W, Wang K, Sun Y, Ye H, Hu B, Zeng X (2015) Influences of structures of galactooligosaccharides and fructooligosaccharides on the fermentation in vitro by human intestinal microbiota. J Funct Foods 13:158–168

    CAS  Google Scholar 

  • Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12(10):661–672

    CAS  PubMed  Google Scholar 

  • Mikkelsen D, Gidley MJ, Williams BA (2011) In vitro fermentation of bacterial cellulose composites as model dietary fibers. J Agric Food Chem 59(8):4025–4032

    CAS  PubMed  Google Scholar 

  • Neri-Numa IA, Pastore GM (2020) Novel insights into prebiotic properties on human health: a review. Food Res Int 131:108973. https://doi.org/10.1016/j.foodres.2019.108973

    Article  PubMed  Google Scholar 

  • Nomura M, Nagatomo R, Doi K, Shimizu J, Baba K, Saito T, Muto M (2020) Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open 3(4):202895–202895

    Google Scholar 

  • Peng J, Xiao X, Hu M, Zhang X (2018) Interaction between gut microbiome and cardiovascular disease. Life Sci 214:153–157

    CAS  PubMed  Google Scholar 

  • Pereira DI, Gibson GR (2002) Cholesterol assimilation by lactic acid bacteria and Bifidobacteria isolated from the human gut. Appl Environ Microbiol 68(9):4689–4693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Conesa D, Lopez G, Ros G (2007) Effects of probiotic, prebiotic and synbiotic follow-up infant formulas on large intestine morphology and bone mineralisation in rats. J Sci Food Agric 87(6):1059–1068

    Google Scholar 

  • Plongbunjong V, Graidist P, Knudsen KEB, Wichienchot S (2017) Starch-based carbohydrates display the bifidogenic and butyrogenic properties in pH-controlled faecal fermentation. Int J Food Sci Technol 52(12):2647–2653

    CAS  Google Scholar 

  • Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217(2):133–139

    CAS  PubMed  Google Scholar 

  • Rivièr A, Selak M, Geirnaert A, Van den Abbeele P, De Vuyst L (2018) Complementary mechanisms for degradation of inulin-type fructans and arabinoxylan oligosaccharides among bifidobacterial strains suggest bacterial cooperation. Appl Environ Microbiol 84(9):e02893-17. https://doi.org/10.1128/AEM.02893-17

    Article  Google Scholar 

  • Scott KP, Martin JC, Duncan SH, Flint HJ (2014) Prebiotic stimulation of human colonic butyrate-producing bacteria and Bifidobacteria, in vitro. FEMS Microbiol Ecol 87(1):30–40

    CAS  PubMed  Google Scholar 

  • Stoddart LA, Smith NJ, Milligan G (2008) International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1,-2, and-3: pharmacology and pathophysiological functions. Pharmacol Rev 60(4):405–417

    CAS  PubMed  Google Scholar 

  • Thacker PA, Salomons MO, Aherne FX, Milligan LP, Bowland JP (1981) Influence of propionic acid on the cholesterol metabolism of pigs fed hypercholesterolemic diets. Can J Anim Sci 61(4):969–975

    CAS  Google Scholar 

  • Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes 61(2):364–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuncil YE, Nakatsu CH, Kazem AE, Arioglu-Tuncil S, Reuhs B, Martens EC, Hamaker BR (2017) Delayed utilization of some fast-fermenting soluble dietary fibers by human gut microbiota when presented in a mixture. J Funct Foods 32:347–357

    CAS  Google Scholar 

  • Tzortzis G, Baillon ML, Gibson GR, Rastall RA (2004) Modulation of anti-pathogenic activity in canine-derived Lactobacillus species by carbohydrate growth substrate. J Appl Microbiol 96(3):552–559

    CAS  PubMed  Google Scholar 

  • Van den Abbeele P, Taminiau B, Pinheiro I, Duysburgh C, Jacobs H, Pijls L, Marzorati M (2018) Arabinoxylo-oligosaccharides and inulin impact inter-individual variation on microbial metabolism and composition, which immunomodulates human cells. J Agric Food Chem 66(5):1121–1130

    PubMed  Google Scholar 

  • Vanderhaeghen S, Lacroix C, Schwab C (2015) Methanogen communities in stools of humans of different age and health status and co-occurrence with bacteria. FEMS Microbiol Lett 362(13):fnv092

    PubMed  Google Scholar 

  • Wang Y (2009) Prebiotics: present and future in food science and technology. Food Res Int 42(1):8–12

    CAS  Google Scholar 

  • Wang M, Wichienchot S, He X, Fu X, Huang Q, Zhang B (2019) In vitro colonic fermentation of dietary fibers: fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci Technol 88:1–8. https://doi.org/10.1016/j.tifs.2019.03.005

    Article  CAS  Google Scholar 

  • Whisner CM, Martin BR, Schoterman MH, Nakatsu CH, McCabe LD, McCabe GP, Weaver CM (2013) Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. British J Nutr 110(7):1292–1303

    CAS  Google Scholar 

  • Wolever T, Brighenti F, Royall D, Jenkins AL, Jenkins DJ (1989) Effect of rectal infusion of short chain fatty acids in human subjects. Amer J Gastroenterol 84(9):1027–1033

    CAS  Google Scholar 

  • Yang J, Martínez I, Walter J, Keshavarzian A, Rose DJ (2013) In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaer 23:74–81

    CAS  Google Scholar 

  • Yuille S, Reichardt N, Panda S, Dunbar H, Mulder IE (2018) Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS One 13(7):e0201073

    PubMed  PubMed Central  Google Scholar 

  • Zambell KL, Fitch MD, Fleming SE (2003) Acetate and butyrate are the major substrates for de novo lipogenesis in rat colonic epithelial cells. J Nutr 133(11):3509–3515

    CAS  PubMed  Google Scholar 

  • Ze X, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6(8):1535–1543

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was self-supported by the authors.

Author information

Authors and Affiliations

Authors

Contributions

TJA conceived and designed research. TJA and JOA wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Tolulope Joshua Ashaolu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the author.

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashaolu, T.J., Ashaolu, J.O. Prebiotics in vitro digestion by gut microbes, products’ chemistry, and clinical relevance. Appl Microbiol Biotechnol 105, 13–19 (2021). https://doi.org/10.1007/s00253-020-11021-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-11021-z

Keywords

Navigation