Skip to main content
Log in

A novel Rap-Phr system in Bacillus velezensis NAU-B3 regulates surfactin production and sporulation via interaction with ComA

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Several quorum sensing systems occurring in Bacillus subtilis, e.g. Rap-Phr systems, were reported to interact with major regulatory proteins, such as ComA, DegU, and Spo0A, in order to regulate competence, sporulation, and synthesis of secondary metabolites. In this study, we characterized a novel Rap-Phr system, RapA4-PhrA4, in Bacillus velezensis NAU-B3. We found that the rapA4 and phrA4 genes were co-transcribed in NAU-B3. When rapA4 was expressed in the heterologous host Bacillus subtilis OKB105, surfactin production and sporulation were severely inhibited. However, when the phrA4 was co-expressed, the RapA4 activity was inhibited. The transcription of the surfactin synthetase srfA gene and sporulation-related genes were also regulated by the RapA4-PhrA4 system. In vitro results obtained from electrophoretic mobility shift assay (EMSA) proved that RapA4 inhibits ComA binding to the promoter of the srfA operon, and the PhrA4 pentapeptide acts as anti-activator of RapA4. We also found that the F24 residue plays a key role in RapA4 function. This study indicated that the novel RapA4-PhrA4 system regulates the surfactin synthesis and sporulation via interaction with ComA, thereby supporting the bacterium to compete and to survive in a hostile environment.

Key points

•Bacillus velezensis NAU-B3 has a novel Rap-Phr quorum sensing system, which does not occur in model strains Bacillus subtilis 168 and B. velezensis FZB42.

•RapA4-PhrA4 regulates surfactin production and sporulation.

•RapA4-PhrA4 interacts with the ComA protein from ComP/ComA two-component system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aleti G, Lehner S, Bacher M, Compant S, Nikolic B, Plesko M, Schuhmacher R, Sessitsch A, Brader G (2016) Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Environ Microbiol 18:2634–2645

    Article  CAS  PubMed  Google Scholar 

  • Auchtung JM, Lee CA, Grossman AD (2006) Modulation of the ComA-dependent quorum response in Bacillus subtilis by multiple Rap proteins and Phr peptides. J Bacteriol 188:5273–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker MD, Neiditch MB (2011) Structural basis of response regulator inhibition by a bacterial anti-activator protein. PLoS Biol 9:e1001226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendori OS, Pollak S, Hizi D, Eldar A (2015) The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. J Bacteriol 197(3):592–602

    Article  CAS  Google Scholar 

  • Boguslawski KM, Hill PA, Griffith KL (2015) Novel mechanisms of controlling the activities of the transcription factors Spo0A and ComA by the plasmid-encoded quorum sensing regulators Rap60-Phr60 in Bacillus subtilis. Mol Microbiol 96:325–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongiorni C, Ishikawa S, Stephenson S, Ogasawara N, Perego M (2005) Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems. J Bacteriol 187:4353–4361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burbulys D, Trach KA, Hoch JA (1991) Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545–552

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25(9):1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury SP, Uhl J, Grosch R, Alquéres S, Pittroff S, Dietel K, Schmitt-Kopplin P, Borriss R, Hartmann A (2015) Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce Rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant-Microbe Interact 28(9):984–995

    Article  CAS  PubMed  Google Scholar 

  • Core L, Perego M (2003) TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis. Mol Microbiol 49:1509–1522

    Article  CAS  PubMed  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  • Diaz AR, Core LJ, Jiang M, Morelli M, Chiang CH, Szurmant H, Perego M (2012) Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide. J Bacteriol 194(6):1378–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Souza C, Nakano MM, Zuber P (1994) Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc Natl Acad Sci U S A 91:9397–9401

  • Dunlap CA, Kim SJ, Kwon SW, Rooney AP (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Microbiol 66(3):1212–1217

    Article  CAS  PubMed  Google Scholar 

  • Fazion F, Perchat S, Buisson C, Vilas-Boas G, Lereclus D (2018) A plasmid-borne Rap-Phr system regulates sporulation of Bacillus thuringiensis in insect larvae. Environ Microbiol 20:145–155

  • Fujita M, Gonzalez-Pastor JE, Losick R (2005) High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol 187:1357–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego DSF, Marina A (2013) Structural basis of Rap phosphatase inhibition by Phr peptides. PLoS Biol 11:e1001511

    Article  CAS  Google Scholar 

  • Gao S, Wu H, Wang W, Yang Y, Xie S, Xie Y, Gao X (2013) Efficient colonization and harpins mediated enhancement in growth and biocontrol of wilt disease in tomato by Bacillus subtilis. Lett Appl Microbiol 57:526–533

    Article  CAS  PubMed  Google Scholar 

  • Hamoen LW, Smits WK, de Jong A, Holsappel S, Kuipers OP (2002) Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 30:5517–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K, Kensuke T, Kobayashi K, Ogasawara N, Ogura M (2006) Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon. Mol Microbiol 59:1714–1729

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Grau R, Perego M (2000) Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. J Bacteriol 182:303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590

    Article  CAS  PubMed  Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186(4):1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci 204(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Landy M, Warren GH, Et A (1948) Bacillomycin; an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med 67:539–541

    Article  CAS  PubMed  Google Scholar 

  • Lazazzera BA, Solomon JM, Grossman AD (1997) An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis. Cell 89:917–925

    Article  CAS  PubMed  Google Scholar 

  • LeDeaux JR, Solomon JM, Grossman AD (1997) Analysis of non-polar deletion mutations in the genes of the spo0K (opp) operon of Bacillus subtilis. FEMS Microbiol Lett 153:63–69

  • Lopez D, Kolter R (2010) Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol Rev 34:134–149

    Article  CAS  PubMed  Google Scholar 

  • Lopez D, Fischbach MA, Chu F, Losick R, Kolter R (2009) Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc Natl Acad Sci U S A 106:280–285

    Article  CAS  PubMed  Google Scholar 

  • Magnuson R, Solomon J, Grossman AD (1994) Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77:207–216

    Article  CAS  PubMed  Google Scholar 

  • McQuade RS, Comella N, Grossman AD (2001) Control of a family of phosphatase regulatory genes (phr) by the alternate sigma factor sigma-H of Bacillus subtilis. J Bacteriol 183:4905–4909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinatto G, Franzil L, Steels S, Puopolo G, Pertot I, Ongena M (2017) Key impact of an uncommon plasmid on Bacillus amyloliquefaciens subsp. plantarum S499 developmental traits and lipopeptide production. Frontiers in. microbiology 8:17

    Google Scholar 

  • Molle V, Fujita M, Jensen ST, Eichenberger P, Gonzalez-Pastor JE, Liu JS, Losick R (2003) The Spo0A regulon of Bacillus subtilis. Mol Microbiol 50:1683–1701

    Article  CAS  PubMed  Google Scholar 

  • Nakano MM, Zuber P (1989) Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis. J Bacteriol 171:5347–5353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano MM, Marahiel MA, Zuber P (1988) Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol 170:5662–5668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neiditch MB, Capodagli GC, Prehna G, Federle MJ (2017) Genetic and structural analyses of RRNPP intercellular peptide signaling of gram-positive bacteria. Annu Rev Genet 51:311–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura M, Fujita Y (2007) Bacillus subtilis rapD, a direct target of transcription repression by RghR, negatively regulates srfA expression. FEMS Microbiol Lett 268:73–80

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Parashar V, Mirouze N, Dubnau DA, Neiditch MB (2011) Structural basis of response regulator dephosphorylation by Rap phosphatases. PLoS Biol 9:e1000589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parashar V, Konkol MA, Kearns DB, Neiditch MB (2013) A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence. J Bacteriol 195:2437–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perego M (2013) Forty years in the making: understanding the molecular mechanism of peptide regulation in bacterial development. PLoS Biol 11:e1001516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perego M, Hanstein C, Welsh KM, Djavakhishvili T, Glaser P, Hoch JA (1994) Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 79:1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51(5):553–563

    Article  CAS  PubMed  Google Scholar 

  • Pottathil M, Lazazzera BA (2003) The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. Front Biosci 8:d32–d45

    Article  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaeffer P, Millet J, Aubert JP (1965) Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A 54:704–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits WK, Bongiorni C, Veening JW, Hamoen LW, Kuipers OP, Perego M (2007) Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis. Mol Microbiol 65:103–120

    Article  CAS  PubMed  Google Scholar 

  • Solomon JM, Magnuson R, Srivastava A, Grossman AD (1995) Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev 9:547–558

    Article  CAS  PubMed  Google Scholar 

  • Stephenson S, Mueller C, Jiang M, Perego M (2003) Molecular analysis of Phr peptide processing in Bacillus subtilis. J Bacteriol 185:4861–4871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stragier P, Losick R (1996) Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet 30:241–297

    Article  Google Scholar 

  • Sullivan MA, Yasbin RE, Young FE (1984) New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene 29:21–26

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HJ, Yang Y, Wang S, Qiao JQ, Xia YF, Wang Y, Wang WD, Gao SF, Liu J, Xue PQ, Gao XW (2011) Cloning, expression and characterization of a new aspartate aminotransferase from Bacillus subtilis B3. FEBS J 278:1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Qiao J, Blom J, Rueckert C, Reva O, Gao X, Borriss R (2013) The rhizobacterium Bacillus amyloliquefaciens subsp. plantarum NAU-B3 contains a large inversion within the central portion of the genome. Genome Announc 1(6). https://doi.org/10.1128/genomeA.00941-13

  • Yang Y, Wu HJ, Lin L, Zhu QQ, Borriss R, Gao XW (2015) A plasmid-born Rap-Phr system regulates surfactin production, sporulation and genetic competence in the heterologous host, Bacillus subtilis OKB105. Appl Microbiol Biotechnol 99:7241–7252

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (grants 2017YFD0201101), the Natural Science Foundation of Jiangsu Province, China (grant BK20181322), the National Natural Science Foundation of China (grants 31972325, 31660543), and the Special Fund for the Fundamental Research Funds for Central Universities (grant KYZ201708, JCQY201904).

Author information

Authors and Affiliations

Authors

Contributions

ZL, JQ, PL, and LZ performed the major experiments and wrote the manuscript. ZQ and LL performed RT-PCR and real-time PCR analysis. CY and YY provided the bioinformatics data. HW designed the research content, analyzed the data, and wrote the manuscript. QG analyzed the data and discussed the data. MZ, RB, and XG analyzed the data and modified the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui-Jun Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Qiao, JQ., Li, PP. et al. A novel Rap-Phr system in Bacillus velezensis NAU-B3 regulates surfactin production and sporulation via interaction with ComA. Appl Microbiol Biotechnol 104, 10059–10074 (2020). https://doi.org/10.1007/s00253-020-10942-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10942-z

Keywords

Navigation