Alvarez HM (2016) Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie 120:28–39. https://doi.org/10.1016/j.biochi.2015.08.016
Adil SF, Assal ME, Khan M, Al-Warthan A, Siddiqui MR, Liz-Marzán LM (2015) Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Trans 44:9709–9717. https://doi.org/10.1039/c4dt03222e
CAS
Article
PubMed
Google Scholar
Agarwal S, Rao AV (2000) Carotenoids and chronic diseases. Drug Metabol Drug Interact 17:189–210. https://doi.org/10.1515/DMDI.2000.17.1-4.189
CAS
Article
PubMed
Google Scholar
Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828. https://doi.org/10.1088/0957-4484/14/7/323
CAS
Article
Google Scholar
Alvarez HM (2003) Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeterior Biodegradation 52:35–42. https://doi.org/10.1016/S0964-8305(02)00120-8
CAS
Article
Google Scholar
Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376. https://doi.org/10.1007/s00253-002-1135-0
CAS
Article
PubMed
Google Scholar
Alvarez HM, Steinbüchel A (2019) Biology of triacylglycerol accumulation by Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus, 2nd edn. Springer Nature, Switzerland, pp 299–332
Chapter
Google Scholar
Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386. https://doi.org/10.1007/s002030050341
CAS
Article
PubMed
Google Scholar
Alvarez HM, Kalscheuer R, Steinbüchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett-Lipid 99:239–246. https://doi.org/10.1002/lipi.19970990704
CAS
Article
Google Scholar
Alvarez HM, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223. https://doi.org/10.1007/s002530000395
CAS
Article
PubMed
Google Scholar
Alvarez HM, Luftmann H, Silva RA, Cesari AC, Viale A, Wältermann M, Steinbüchel A (2002) Identification of phenyldecanoic acid as a constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630. Microbiology 148:1407–1412. https://doi.org/10.1099/00221287-148-5-1407
CAS
Article
PubMed
Google Scholar
Alvarez HM, Silva RA, Herrero M, Hernández MA, Villalba MS (2013) Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics. J Mol Biochem 2:2119–2130. https://doi.org/10.1007/s00253-012-4360-1
CAS
Article
Google Scholar
Alvarez HM, Herrero OM, Silva RA, Hernández MA, Lanfranconi MP, Villalba MS (2019) Insights into the metabolism of oleaginous Rhodococcus spp. Appl Environ Microbiol 85:8075–8012. https://doi.org/10.1128/AEM.00498-19
Article
Google Scholar
Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472
CAS
Article
Google Scholar
Anthony WE, Carr RR, DeLorenzo DM, Campbell TP, Shang Z, Foston M, Moon TS, Dantas G (2019) Development of Rhodococcus opacus as a chassis for lignin valorization and bioproduction of high-value compounds. Biotechnol Biofuels 12:192. https://doi.org/10.1186/s13068-019-1535-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Asselineau C, Asselineau J, Lanéelle G, Lanéelle MA (2002) The biosynthesis of mycolic acids by Mycobacteria: current and alternative hypotheses. Prog Lipid Res 41:501–523. https://doi.org/10.1016/S0163-7827(02)00008-5
CAS
Article
PubMed
Google Scholar
Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444. https://doi.org/10.1007/s00253-010-2589-0
CAS
Article
PubMed
Google Scholar
Bhatia SK, Kim J, Song HS, Kim HJ, Jeon JM, Sathiyanarayanan G, Yoon JJ, Park K, Kim YG, Yang YH (2017) Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01. Bioresour Technol 233:99–109. https://doi.org/10.1016/j.biortech.2017.02.061
CAS
Article
PubMed
Google Scholar
Bhatia SK, Gurav R, Choi TR, Han YH, Park YL, Park JY, Jung HR, Yang SY, Song HS, Kim SH, Choi KY, Yang YH (2019) Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp. YHY01. Bioresour Technol 289:121704. https://doi.org/10.1016/j.biortech.2019.121704
CAS
Article
PubMed
Google Scholar
Blakie B (2015) Production of omega-3 fatty acids in Rhodococcus opacus PD630. Dissertation, University of Otago, New Zealand
Borroni V, Gonzalez MT, Carelli AA (2017) Bioproduction of carotenoid compounds using two-phase olive mill waste as the substrate. Process Biochem 54:128–134. https://doi.org/10.1016/j.procbio.2017.01.003
CAS
Article
Google Scholar
Bosello M, Robbel L, Linne U, Xie X, Marahiel MA (2011) Biosynthesis of the siderophore rhodochelin requires the coordinated expression of three independent gene clusters in Rhodococcus jostii RHA1. J Am Chem Soc 133:4587–4595. https://doi.org/10.1021/ja1109453
CAS
Article
PubMed
Google Scholar
Bosello M, Mielcarek A, Giessen TW, Marahiel MA (2012) An enzymatic pathway for the biosynthesis of the formylhydroxyornithine required for rhodochelin iron coordination. Biochemistry 51:3059–3066. https://doi.org/10.1021/bi201837f
CAS
Article
PubMed
Google Scholar
Bosello M, Zeyadi M, Kraas FI, Linne U, Xie X, Marahiel MA (2013) Structural characterization of the heterobactin siderophores from Rhodococcus erythropolis PR4 and elucidation of their biosynthetic machinery. J Nat Prod 76:2282–2290. https://doi.org/10.1021/np4006579
CAS
Article
PubMed
Google Scholar
Bouchez-Naïtali M, Blanchet D, Bardin V, Vandecasteele JP (2001) Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology 147:2537–2543. https://doi.org/10.1099/00221287-147-9-2537
Article
Google Scholar
Bredholt H, Josefsen K, Vatland A, Bruheim P, Eimhjellen K (1998) Emulsification of crude oil by an alkane-oxidizing Rhodococcus species isolated from seawater. Can J Microbiol 44:330–340. https://doi.org/10.1139/w98-005
CAS
Article
Google Scholar
Bredholt H, Bruheim P, Potocky M, Eimhjellen K (2002) Hydrophobicity development, alkane oxidation, and crude-oil emulsification in a Rhodococcus species. Can J Microbiol 48:295–304. https://doi.org/10.1139/w02-024
CAS
Article
PubMed
Google Scholar
Calder PC (2013) Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol 75:645–662. https://doi.org/10.1111/j.1365-2125-2012.04374.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Cao G (2004) Introduction. In: Cao G (ed) Nanostructures and nanomaterials, synthesis, properties and applications, 1st edn. Imperial College Press, London, pp 1–17
Chapter
Google Scholar
Cappelletti M, Presentato A, Milazzo G, Turner RJ, Fedi S, Frascari D, Zannoni D (2015) Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes. Front Microbiol 6:393. https://doi.org/10.3389/fmicb.2015.00393
Article
PubMed
PubMed Central
Google Scholar
Cappelletti M, Fedi S, Zampolli J, Di Canito A, D'Ursi P, Orro A, Viti C, Milanesi L, Zannoni D, Di Gennaro P (2016) Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7. Res Microbiol 167:766–773. https://doi.org/10.1016/j.resmic.2016.06.008
CAS
Article
PubMed
Google Scholar
Cappelletti M, Frascari D, Pinelli D, Mezzettia F, Fedi S, Zannoni D (2017) Aerobic cometabolism of 1,1,2,2-TeCA by a propane-growing microbial consortium (C2): diversity of alkane monooxygenase genes and design of an on-site bioremediation process. Int Biodeterior Biodegr 119:649–660. https://doi.org/10.1016/j.ibiod.2016.09.019
CAS
Article
Google Scholar
Cappelletti M, Pinelli D, Fedi S, Mezzetti F, Zannoni D (2018) Aerobic co-metabolism of 1,1,2,2-tetrachloroethane by Rhodococcus aetherivorans TPA grown on propane: kinetic study and bioreactor configuration analysis. J Chem Technol Biotechnol 93:155–165. https://doi.org/10.1002/jctb.5335
CAS
Article
Google Scholar
Cappelletti M, Fedi S, Zannoni D (2019a) Degradation of alkanes in Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus, 2nd edn. Springer, Switzerland, pp 137–171
Chapter
Google Scholar
Cappelletti M, Zampolli J, Di Gennaro P, Zannoni D (2019b) Genomics of Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus, 2nd edn. Springer, Switzerland, pp 23–60
Chapter
Google Scholar
Carrano CJ, Jordan M, Drechsel H, Schmid DG, Winkelmann G (2001) Heterobactins: a new class of siderophores from Rhodococcus erythropolis IGTS8 containing both hydroxamate and catecholate donor groups. Biometals 14:119–125. https://doi.org/10.1023/A:1016633529461
CAS
Article
Google Scholar
Castro AR, Rocha I, Alves MM, Pereira MA (2016) Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals. AMB Express 6:35. https://doi.org/10.1186/s13568-016-0207-y
Ceniceros A, Dijkhuizen L, Petrusma M, Medema MH (2017) Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics 18:593. https://doi.org/10.1186/s12864-017-3966-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Centers for Disease Control and Prevention National Institute for Occupational Safety and Health (CDC) (2014) Current strategies for engineering controls in nanomaterial production and downstream handling processes. https://www.cdc.gov/niosh/docs/2014-102/pdfs/2014-102.pdf
Chen Y, Ding Y, Yang L, Yu J, Liu G, Wang X, Zhang S, Yu D, Song L, Zhang H, Zhang C, Huo L, Huo C, Wang Y, Du Y, Zhang H, Zhang P, Na H, Xu S, Zhu Y, Xie Z, He T, Zhang Y, Wang G, Fan Z, Yang F, Liu H, Wang X, Zhang X, Zhang MQ, Li Y, Steinbüchel A, Fujimoto T, Cichello S, Yu J, Liu P (2014) Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Res 42:1052–1064. https://doi.org/10.1093/nar/gkt932
CAS
Article
PubMed
Google Scholar
Chiba H, Agematu H, Kaneto R, Terasawa T, Sakai K, Dobashi K, Yoshioka T (1999) Rhodopeptins (Mer-N1033), novel cyclic tetrapeptides with antifungal activity from Rhodococcus sp. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot 52:695–699. https://doi.org/10.7164/antibiotics.52.695
CAS
Article
PubMed
Google Scholar
Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929. https://doi.org/10.1046/j.1365-2672.2002.01774.x
CAS
Article
PubMed
Google Scholar
Chu J, Vila-Farres X, Inoyama D, Ternei M, Cohen LJ, Gordon EA, Reddy BV, Charlop-Powers Z, Zebroski HA, Gallardo-Macias R, Jaskowski M, Satish S, Park S, Perlin DS, Freundlich JS, Brady SF (2016) Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat Chem Biol 12:1004–1006. https://doi.org/10.1038/nchembio.2207
CAS
Article
PubMed
PubMed Central
Google Scholar
Ciapina EM, Melo WC, Santa Anna LM, Santos AS, Freire DM, Pereira N Jr (2006) Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source. Appl Biochem Biotechnol 31:880–886. https://doi.org/10.1385/ABAB:131:1:880
Article
Google Scholar
Ciavarelli R, Cappelletti M, Fedi S, Pinelli D, Frascari D (2012) Chloroform aerobic cometabolism by butane-growing Rhodococcus aetherovorans BCP1 in continuous-flow biofilm reactors. Bioprocess Biosyst Eng 35:667–681. https://doi.org/10.1007/s00449-011-0647-3
CAS
Article
PubMed
Google Scholar
Cohen M, Meziane T, Yamasaki H (2004) A photocarotenogenic Rhodococcus sp. isolated from the symbiotic fern Azolla. Endocytobiosis Cell Res 15:350–355
Google Scholar
Dávila Costa JS, Herrero OM, Alvarez HM, Leichert L (2015) Label-free and redox proteomic analyses of the triacylglycerol-accumulating Rhodococcus jostii RHA1. Microbiology 161:593–610. https://doi.org/10.1099/mic.0.000028
CAS
Article
PubMed
Google Scholar
de Carvalho CCCR (2012) Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res Microbiol 163:125–136. https://doi.org/10.1016/j.resmic.2011.11.003
CAS
Article
PubMed
Google Scholar
de Carvalho CCCR, Marques MPC, Hachicho N, Heipieper HJ (2014) Rapid adaptation of Rhodococcus erythropolis cells to salt stress by synthesizing polyunsaturated fatty acids. Appl Microbiol Biotechnol 98:5599–5606. https://doi.org/10.1007/s00253-014-5549-2
CAS
Article
PubMed
Google Scholar
De Serrano LO (2017) Biotechnology of siderophores in high-impact scientific fields. Biomol Concepts 8:683–611. https://doi.org/10.1515/bmc-2017-0016
CAS
Article
Google Scholar
DeLorenzo DM, Rottinghaus AG, Henson WR, Moon TS (2018) Molecular toolkit for gene expression control and genome modification in Rhodococcus opacus PD630. ACS Synth Biol 7:727–738. https://doi.org/10.1021/acssynbio.7b00416
CAS
Article
PubMed
Google Scholar
Dhungana S, Michalczyk R, Boukhalfa H, Lack JG, Koppisch AT, Fairlee JM, Johnson MT, Ruggiero CE, John SG, Cox MM, Browder CC, Forsythe JH, Vanderberg LA, Neu MP, Hersman LE (2007) Purification and characterization of rhodobactin: a mixed ligand siderophore from Rhodococcus rhodochrous strain OFS. Biometals 20:853. https://doi.org/10.1007/s10534-006-9079-y
CAS
Article
PubMed
Google Scholar
Doroghazi JR, Metcalf WW (2013) Comparative genomics of Actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics 14:611. https://doi.org/10.1186/1471-2164-14-611
CAS
Article
PubMed
PubMed Central
Google Scholar
Elsayed Y, Refaat J, Abdelmohsen UR, Fouad MA (2017) The genus Rhodococcus as a source of novel bioactive substances: a review. J Pharma Phytochem 6:83–92
CAS
Google Scholar
Finnerty WR (1992) The biology and genetics of the genus Rhodococcus. Annu Rev Microbiol 46:193–218. https://doi.org/10.1146/annurev.mi.46.100192.001205
CAS
Article
PubMed
Google Scholar
Firrincieli A, Prepentato A, Favoino G, Marabottini R, Allevato E, Stazi SR, Scarascia Mugnozza G, Harfouche A, Petruccioli M, Turner RJ, Zannoni D, Cappelletti M (2019) Identification of resistance genes and response to arsenic in Rhodococcus aetherivorans BCP1. Front Microbiol 10:888. https://doi.org/10.3389/fmicb.2019.00888
Article
PubMed
PubMed Central
Google Scholar
Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol 112:617–627. https://doi.org/10.1002/ejlt.200900162
CAS
Article
Google Scholar
George S, Jayachandran K (2013) Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. J Appl Microbiol 114:373–383. https://doi.org/10.1111/jam.12069
CAS
Article
PubMed
Google Scholar
Gillor O, Etzion A, Riley MA (2008) The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol 81:591–606. https://doi.org/10.1007/s00253-008-1726-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Guo J, Liu J, Yang Y, Zhou Y, Jiang S, Chen C (2018) Fermentation and kinetics characteristics of a bioflocculant from potato starch wastewater and its application. Sci Rep 8:3631. https://doi.org/10.1038/s41598-018-21796-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Haywood GW, Anderson AJ, Williams DR, Dawes EA, Ewing DF (1991) Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int J Biol Macromol 13:83–88. https://doi.org/10.1016/0141-8130(91)90053-W
CAS
Article
PubMed
Google Scholar
Henson WR, Campbell T, DeLorenzo DM, Gao Y, Berla B, Kim SJ, Foston M, Moon TS, Dantas G (2018) Multi-omic elucidation of aromatic catabolism in adaptively evolved Rhodococcus opacus. Metab Eng 49:69–83. https://doi.org/10.1016/j.ymben.2018.06.009
CAS
Article
PubMed
Google Scholar
Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF, Alvarez HM (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 12:600. https://doi.org/10.1186/1471-2164-9-600
CAS
Article
Google Scholar
Hernández MA, Comba S, Arabolaza A, Gramajo H, Alvarez HM (2015) Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus spp. strains. Appl Microbiol Biotechnol 99:2191–2207. https://doi.org/10.1007/s00253-014-6002-2
CAS
Article
PubMed
Google Scholar
Herrero OM, Moncalián G, Alvarez HM (2016) Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production. Microbiology 162:384–397. https://doi.org/10.1099/mic.0.000232
CAS
Article
PubMed
Google Scholar
Herrero OM, Villalba MS, Lanfranconi MP, Alvarez HM (2018) Rhodococcus bacteria as a promising source of oils from olive mill wastes. World J Microbiol Biotechnol 34:114. https://doi.org/10.1007/s11274-018-2499-3
CAS
Article
PubMed
Google Scholar
Hetzler S, Steinbüchel A (2013) Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630. Appl Environ Microbiol 79:3122–3125. https://doi.org/10.1128/AEM.03678-12
CAS
Article
PubMed
PubMed Central
Google Scholar
Hetzler S, Bröker D, Steinbüchel A (2013) Saccharification of cellulose by recombinant Rhodococcus opacus PD630 strains. Appl Environ Microbiol 79:5159–5166. https://doi.org/10.1128/AEM.01214-13
CAS
Article
PubMed
PubMed Central
Google Scholar
Hori K, Abe M, Unno H (2009) Production of triacylglycerol and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the toluene-degrading bacterium Rhodococcus aetherivorans IAR1. J Biosci Bioeng 108:319–324. https://doi.org/10.1016/j.jbiosc.2009.04.020
CAS
Article
PubMed
Google Scholar
Horikoshi S, Serpone N (2013) General introduction to nanoparticles. In: Horikoshi S, Serpone N (eds) Microwaves in nanoparticle synthesis: fundamentals and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–24
Chapter
Google Scholar
Ichiyama S, Shimokata K, Tsukamura M (1988) Relationship between mycobacterial species and their carotenoid pigments. Microbiol Immunol 32:473–479. https://doi.org/10.1111/j.1348-0421.1988.tb01407.x
CAS
Article
PubMed
Google Scholar
Ichiyama S, Shimokata K, Tsukamura M (1989) Carotenoid pigments of genus Rhodococcus. Microbiol Immunol 33:503–508. https://doi.org/10.1111/j.1348-0421.1989.tb01999.x
CAS
Article
PubMed
Google Scholar
Inaba T, Tokumoto Y, Miyazaki Y, Inoue N, Maseda H, Nakajima-Kambe T, Uchiyama H, Nomura N (2013) Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Appl Environ Microbiol 79:7082–7090. https://doi.org/10.1128/AEM.01664-13
CAS
Article
PubMed
PubMed Central
Google Scholar
Inokoshi J, Matsuhama M, Miyake M, Ikeda H, Tomoda H (2012) Molecular cloning of the gene cluster for lariatin biosynthesis of Rhodococcus jostii K01-B0171. Appl Microbiol Biotechnol 95 (2):451–460
Iwabuchi N, Sunairi M, Urai M, Itoh C, Anzai H, Nakajima M, Harayama S (2002) Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl Environ Microbiol 68:2337–2343. https://doi.org/10.1128/AEM.68.5.2337-2343.2002
CAS
Article
PubMed
PubMed Central
Google Scholar
Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Omura S (2006) Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01-B0171, have a lasso structure. J Am Chem Soc 128:7487. https://doi.org/10.1021/ja056780z
CAS
Article
Google Scholar
Iwatsuki M, Uchida R, Takakusagi Y, Matsumoto A, Jiang CL, Takahashi Y, Arai M, Kobayashi S, Matsumoto M, Inokoshi J, Tomoda H, Omura S (2007) Lariatins, novel anti-mycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171. J Antibiot 60:357–363. https://doi.org/10.1038/ja.2007.48
CAS
Article
PubMed
Google Scholar
Jiang J, Liu L, Nie W, Chen Y, Wang Z (2019) Screening of a high bioflocculant-producing bacterial strain from an intensive fishpond and comparison of the bioflocculation effects with Rhodococcus erythropolis. Aquac Res 50:1047–1056. https://doi.org/10.1111/are.13977
CAS
Article
Google Scholar
Jiao S, Li F, Yu H, Shen Z (2020) Advances in acrylamide bioproduction catalyzed with Rhodococcus cells harboring nitrile hydratase. Appl Microbiol Biotechnol 104:1001–1012. https://doi.org/10.1007/s00253-019-10284-5
CAS
Article
PubMed
Google Scholar
Johnstone TC, Nolan EM (2015) Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 44:6320–6339. https://doi.org/10.1039/c4dt03559c
CAS
Article
PubMed
PubMed Central
Google Scholar
Kazemi K, Zhang B, Lye LM (2009) Production of biosurfactant by Rhodococcus erythropolis sp. cultivated in a novel fish waste compost extract substrate. Conference: CSCE Annual Conference At: London, Canada
Kim JS, Powalla M, Lang S, Wagner F, Lunsdorf H, Wray V (1990) Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol 13:257–266. https://doi.org/10.1016/0168-1656(90)90074-L
CAS
Article
PubMed
Google Scholar
Kim D, Choi KY, Yoo M, Zylstra GJ, Kim E (2018) Biotechnological potential of Rhodococcus biodegradative pathways. J Microbiol Biotechnol 28:1037–1051. https://doi.org/10.4014/jmb.1712.12017
CAS
Article
PubMed
Google Scholar
Kitagawa W, Tamura T (2008) Three types of antibiotics produced from Rhodococcus erythropolis strains. Microbes Environ 23:167–171. https://doi.org/10.1264/jsme2.23.167
Article
PubMed
Google Scholar
Kitigawa W, Mitsuhashi S, Hata M, Tamura T (2018) Identification of a novel bacteriocin-like protein and structural gene from Rhodococcus erythropolis JCM 2895, using suppression-subtractive hybridization. J Antibiot 71:872–879. https://doi.org/10.1038/s4129-018-0078-3
Article
Google Scholar
Kosa M, Ragauskas AJ (2012) Bioconversion of lignin model compounds with oleaginous rhodococci. Appl Microbiol Biotechnol 93:891–900. https://doi.org/10.1007/s00253-011-3743-z
CAS
Article
PubMed
Google Scholar
Kourmentza C, Placido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4:55. https://doi.org/10.3390/bioengineering4020055
CAS
Article
PubMed Central
Google Scholar
Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18. https://doi.org/10.1007/s00027-003-0690-5
CAS
Article
Google Scholar
Kretschmer A, Wagner F (1983) Characterization of biosynthetic intermediates of trehalose dicorynomycolates from Rhodococcus erythropolis grown on n-alkanes. Appl Environ Microbiol 44:864–870. https://doi.org/10.1016/0005-2760(83)90053-X
Article
Google Scholar
Krivoruchko A, Kuyukina M, Ivshina I (2019) Advanced Rhodococcus biocatalysts for environmental biotechnologies. Catalysts 9:236–236. https://doi.org/10.3390/catal9030236
CAS
Article
Google Scholar
Kundu D, Hazra C, Chatterjee A, Chaudhari A, Mishra S (2014) Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J Photochem Photobiol B 140:194–204. https://doi.org/10.1016/j.jphotobiol.2014.08.001
CAS
Article
PubMed
Google Scholar
Kundu D, Hazra C, Chaudhari A (2015) Biodegradation of 2,4-dinitrotoluene with Rhodococcus pyridinivorans NT2: characteristics, kinetic modeling, physiological responses and metabolic pathway. RCS Adv 5:38818–38829. https://doi.org/10.1039/C5RA02450A
CAS
Article
Google Scholar
Kurane R, Hatamochi K, Kakuno T, Kiyohara M, Hirano M, Taniguchi Y (1994) Production of a bioflocculant by Rhodococcus erythropolis S-1 grown on alcohols. Biosci Biotechnol Biochem 58:428–429. https://doi.org/10.1271/bbb.58.428
CAS
Article
Google Scholar
Kurosawa K, Ghiviriga I, Sambandan TG, Lessard PA, Barbara JE, Rha C, Sinskey AJ (2008) Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J Am Chem Soc 30:1126–1127. https://doi.org/10.1021/ja077821p
CAS
Article
Google Scholar
Kurosawa K, Wewetzer SJ, Sinskey AJ (2013) Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuels 6:134. https://doi.org/10.1186/1754-6834-6-134
CAS
Article
PubMed
PubMed Central
Google Scholar
Kurosawa K, Wewetzer SJ, Sinskey AJ (2014) Triacylglycerol production from corn Stover using a xylose-fermenting Rhodococcus opacus strain for lignocellulosic biofuels. J Microbial Biochem Technol 6:254–259. https://doi.org/10.4172/1948-5948.1000153
CAS
Article
Google Scholar
Kurosawa K, Laser J, Sinskey AJ (2015a) Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnol Biofuels 8:76. https://doi.org/10.1186/s13068-015-0258-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Kurosawa K, Radek A, Plassmeier JK, Sinskey AJ (2015b) Improved glycerol utilization by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels. Biotechnol Biofuels 8:31. https://doi.org/10.1186/s13068-015-0209-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Kuyukina MS, Ivshina IB (2010) Rhodococcus biosurfactants: biosynthesis, properties, and potential applications. In: Alvarez HM (ed) Biology of Rhodococcus, 1st edn. Springer-Verlag, Berlin, pp 292–313
Google Scholar
Kuyukina MS, Ivshina IB, Philp JC, Christofi N, Dunbar SA, Ritchkova MI (2001) Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods 46:149–156. https://doi.org/10.1016/S0167-7012(01)00259-7
CAS
Article
PubMed
Google Scholar
Kuyukina MS, Ivshina IB, Baeva TA, Kochina OA, Gein SV, Chereshnev VA (2015) Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. New Biotechnol 32:559–568. https://doi.org/10.1016/j.nbt.2015.03.006
CAS
Article
Google Scholar
Lanfranconi MP, Alvarez HM (2017) Rewiring neutral lipids production for the de novo synthesis of wax esters in Rhodococcus opacus PD630. J Biotechnol 260:67–73. https://doi.org/10.1016/j.jbiotec.2017.09.009
CAS
Article
PubMed
Google Scholar
Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek 74:59–70. https://doi.org/10.1023/A:1001799711799
CAS
Article
PubMed
Google Scholar
LeBlanc JC, Gonçalves ER, Mohn WW (2008) Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74:2627–2636. https://doi.org/10.1128/AEM.02711-07
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee CS, Robinson J, Chong MF (2014) A review on application of flocculants in wastewater treatment. Process Saf Environ 92:489–508. https://doi.org/10.1016/j.psep.2014.04.010
CAS
Article
Google Scholar
Lee JM, Lee H, Kang S, Park WJ (2016) Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 4:8. https://doi.org/10.3390/nu8010023
CAS
Article
Google Scholar
Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:270974. https://doi.org/10.1155/2011/270974
CAS
Article
Google Scholar
Liang Y, Jiao S, Wang M, Yu H, Shen Z (2020) A CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH. Metab Eng 57:13–22. https://doi.org/10.1016/j.ymben.2019.10.003
CAS
Article
PubMed
Google Scholar
Maas D, Valerio A, Lourenco LA, de Oliveira D, Hotza D (2019a) Biosynthesis of iron oxide nanoparticles from mineral coal tailings in a stirred tank reactor. Hydrometallurgy. 184:199–205. https://doi.org/10.1016/j.hydromet.2019.01.010
CAS
Article
Google Scholar
Maas D, de Medeiros MM, Cesa Rovaris B, Bernardin AM, de Oliveira D, Hotza D (2019b) Biomining of iron-containing nanoparticles from coal tailings. Appl Microbiol Biotechnol 103:7231–7240. https://doi.org/10.1007/s00253-019-10001-2
CAS
Article
Google Scholar
Manimaran M, Kannabiran K (2017) Actinomycetes-mediated biogenic synthesis of metal and metal oxide nanoparticles: progress and challenges. Lett Appl Microbiol 64:401–408. https://doi.org/10.1111/lam.12730
CAS
Article
PubMed
Google Scholar
Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2016) Actinobacteria mediated synthesis of nanoparticles and their biological properties: a review. Crit Rev Microbiol 42:209–221. https://doi.org/10.3109/104084X.2014.917069
CAS
Article
PubMed
Google Scholar
Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177. https://doi.org/10.1016/j.envint.2008.07.018
CAS
Article
PubMed
Google Scholar
Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451. https://doi.org/10.1128/MMBR.00012-07
CAS
Article
PubMed
PubMed Central
Google Scholar
Muhammadi S, Afzal M, Hameed S (2014) Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev 8:356–377. https://doi.org/10.1080/17518253.2015.1109715
CAS
Article
Google Scholar
Nachtigall J, Schneider K, Nicholson G, Goodfellow M, Zinecker H, Imhoff JF, Süssmuth RD, Fiedler HP (2010) Two new aurachins from Rhodococcus sp. Acta 2259. J Antibiot 63:567–569. https://doi.org/10.1038/ja.2010.79
CAS
Article
PubMed
Google Scholar
Nepal KK, Wang G (2019) Streptomycetes: surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv 37:1–20. https://doi.org/10.1016/j.biotechadv.2018.10.003
CAS
Article
PubMed
Google Scholar
Nichols DS (2003) Prokaryotes and the input of polyunsaturated fatty acids to the marine food web. FEMS Microbiol Lett 219:1–7. https://doi.org/10.3390/molecules23102583
CAS
Article
PubMed
Google Scholar
Niescher S, Wray V, Lang S, Kaschabek SR, Schlömann M (2005) Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP. Appl Microbiol Biotechnol 70:605–611. https://doi.org/10.1007/s00253-005-0113-8
CAS
Article
PubMed
Google Scholar
Orro A, Cappelletti M, D’Ursi P, Milanesi L, Di Canito A, Zampolli J, Collina E, Decorosi F, Viti C, Fedi S, Presentato A, Zannoni D, Di Gennaro P (2015) Genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: genetic determinants and metabolic abilities with environmental relevance. PLoS One 10:e0139467. https://doi.org/10.1371/journal.pone.0139467
CAS
Article
PubMed
PubMed Central
Google Scholar
Ortiz A, Teruel JA, Espuny MJ, Marqués A, Manresa A, Aranda FJ (2008) Interactions of a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes. Biochim Biophys Acta 1778:2806–2813. https://doi.org/10.1016/j.bbamem.2008.07.016
CAS
Article
PubMed
Google Scholar
Osawa A, Kasahara A, Masttuoka S, Gassel S, Sandmann G, Shindo K (2011) Isolation of a novel carotenoid, OH-chlorobactene glucoside hexadecanoate, and related rare carotenoids from Rhodococcus sp. cip and their antioxidative activities. Biosci Biotechnol Biochem 75:2142–2147. https://doi.org/10.1271/bbb.110441
CAS
Article
PubMed
Google Scholar
Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH (2012) Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. mater Lett 72:92-94. https://doi.org/10.1016/j.matlet.2011.12.109
Pacheco GJ, Ciapina EM, Gomes Ede B, Junior NP (2010) Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Braz J Microbiol 41:685–693. https://doi.org/10.1590/S1517-83822010000300019
CAS
Article
PubMed
PubMed Central
Google Scholar
Page CA, Bonner JS, Kanga SA, Mills MA, Autenrieth RL (1999) Biosurfactant solubilization of PAHs. Environ Eng Sci 16:465–474. https://doi.org/10.1089/ees.1999.16.465
CAS
Article
Google Scholar
Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:5. https://doi.org/10.4172/2157-7439.1000233
CAS
Article
Google Scholar
Patel A, Matsakas L, Hrůzová K, Rova U, Christakopoulos P (2019) Biosynthesis of nutraceutical fatty acids by the oleaginous marine microalgae Phaeodactylum tricornutum utilizing hydrolysates from organosolv-pretreated birch and spruce biomass. Mar Drugs 17:119. https://doi.org/10.3390/md17020119
CAS
Article
PubMed Central
Google Scholar
Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102:1603–1611. https://doi.org/10.1111/j.1365-2672.2006.03267.x
CAS
Article
PubMed
Google Scholar
Peng L, Yang C, Zeng G, Wang L, Dai C, Long Z, Liu H, Zhong Y (2014) Characterization and application of bioflocculant prepared by Rhodococcus erythropolis using sludge and livestock wastewater as cheap culture media. Appl Microbiol Biotechnol 98:6847–6858. https://doi.org/10.1007/s00253-014-5725-4
CAS
Article
PubMed
Google Scholar
Philp JC, Kuyukina MS, Ivshina IB, Dunbar SA, Christofi N, Lang S, Wray V (2002) Alkanotrophic Rhodococcus ruber as a biosurfactant producer. Appl Microbiol Biotechnol 59:318–324. https://doi.org/10.1007/s00253-002-1018-4
CAS
Article
PubMed
Google Scholar
Piacenza E, Presentato A, Turner RJ (2018) Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures. Crit Rev Biotechnol 25:1–20. https://doi.org/10.1080/07388551.2018.1440525
CAS
Article
Google Scholar
Pieper U, Steinbüchel A (1992) Identification, cloning and sequence analysis of the poly(3-hydroxyalkanoic acid) synthase gene of the gram-positive bacterium Rhodococcus ruber. FEMS Microbiol Lett 75:73–79. https://doi.org/10.1111/j.1574-6968.1992.tb05396.x
CAS
Article
PubMed
Google Scholar
Pirog TP, Shevchuk TA, Voloshina IN, Karpenko EV (2004) Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Appl Biochem Microbiol 40:470–475. https://doi.org/10.1023/B:ABIM.0000040670.33787.5f
CAS
Article
Google Scholar
Pirog TP, Korzh YV, Shevchuk TA, Tarasenko DA (2008) Peculiarities of C2 metabolism and intensification of the synthesis of surface-active substances in Rhodococcus erythropolis EK-1 grown in ethanol. Microbiology 77:665–673. https://doi.org/10.1134/S0026261708060039
CAS
Article
Google Scholar
Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2016) Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Microb Cell Factories 15:204. https://doi.org/10.1186/s12934-016-0602-8
Presentato A, Cappelletti M, Sansone A, Ferreri C, Piacenza E, Demeter MA, Crognale S, Petruccioli M, Milazzo G, Fedi S, Steinbüchel A, Turner RJ, Zannoni D (2018a) Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the sole carbon and energy sources. Front Microbiol 9:672. https://doi.org/10.3389/fmicb.2018.00672
Article
PubMed
PubMed Central
Google Scholar
Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2018b) Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnol 41:1–8. https://doi.org/10.1016/j.nbt.2017.11.002
CAS
Article
Google Scholar
Presentato A, Piacenza E, Darbandi A, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2018c) Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1. Sci Rep 8:3923. https://doi.org/10.1038/s41598-018-22320-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216. https://doi.org/10.1016/j.phrs.2007.01.012
CAS
Article
PubMed
Google Scholar
Rao CN, Muller A, Cheetham AK (2004) The chemistry of nanomaterials: synthesis, properties and applications. Weinheim, Wiley-VCH Verlag GmbH, pp 1–11. https://doi.org/10.1002/352760247X
Book
Google Scholar
Rapp P, Bock H, Wray V, Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol 115:491–503
CAS
Article
Google Scholar
Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33. https://doi.org/10.1042/BJ20031254
CAS
Article
PubMed
PubMed Central
Google Scholar
Rehm BHA, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macrol 25:3–19. https://doi.org/10.1016/S0141-8130(99)00010-0
CAS
Article
Google Scholar
Retamal-Morales G, Heine T, Tischler JS, Erler B, Gröning JAD, Kaschabek SR, Schlömann M, Levicán G, Tischler D (2018a) Draft genome sequence of Rhodococcus erythropolis B7g, a biosurfactant producing actinobacterium. J Biotechnol 20:38–41. https://doi.org/10.1016/j.biotec.2018.06.001
Article
Google Scholar
Retamal-Morales G, Mehnert M, Schwabe R, Tischler D, Zapata C, Chávez R, Schlömann M, Levicán G (2018b) Detection of arsenic-binding siderophores in arsenic-tolerating Actinobacteria by a modified CAS assay. Ecotoxicol Environ Saf 15(157):176–181. https://doi.org/10.1016/j.ecoenv.2018.03.087
CAS
Article
Google Scholar
Ristau E, Wagner F (1983) Formation of novel anionic trehalose tetraesters from Rhodococcus erythropolis under growth-limiting conditions. Biotechnol Lett 5:95–100
CAS
Article
Google Scholar
Ruggeri C, Franzetti A, Bestetti G, Caredda P, La Colla P, Pintus M, Sergi S, Tamburini E (2009) Isolation and characterization of surface active compounds producing bacteria from hydrocarbon-contaminated environments. Int Biodeterior Biodegrad 63:936–942. https://doi.org/10.1016/j.biod.2009.05.003
CAS
Article
Google Scholar
Sadouk Z, Hacene H, Tazerouti A (2008) Biosurfactants production from low cost substrate and degradation of diesel oil by Rhodococcus strain. Oil Gas Sci Technol 63:747–753. https://doi.org/10.2516/ogst:2008037
CAS
Article
Google Scholar
Saini RK, Keum YS (2017) Progress in microbial carotenoids production. Indian J Microbiol 57:129–130. https://doi.org/10.1007/s12088-016-0637-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Salehizadeh H, Yan N, Farnood R (2018) Recent advances in polysaccharide bio-based flocculants. Biotechnol Adv 36:92–119. https://doi.org/10.1016/j.biotechadv.2017.10.002
CAS
Article
PubMed
Google Scholar
Santos DK, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17:401. https://doi.org/10.3390/ijms17030401
CAS
Article
PubMed
PubMed Central
Google Scholar
Silva RA, Grossi V, Olivera N, Alvarez HM (2010) Characterization of the indigenous Rhodococcus sp. 602, a strain able to accumulate triacylglycerides from naphthyl-compounds under nitrogen-starved conditions. Res Microbiol 161:198–207. https://doi.org/10.1016/j.resmic.2010.01.007
CAS
Article
PubMed
Google Scholar
Stancu MM (2015) Response of Rhodococcus erythropolis strain IBBPo1 to toxic organic solvents. Braz J Microbiol 46:1009–1018. https://doi.org/10.1590/S1517-838246420140462
CAS
Article
PubMed
PubMed Central
Google Scholar
Steinbüchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 103:217–230. https://doi.org/10.1111/j.1574-6968.1992.tb05841.x
Article
Google Scholar
Subbaiya R, Preetha L, Gayathril S, Swarnalatha WA, Selvam MM (2014) Synthesis and characterization of silver nanoparticles from Rhodococcus-2891 and its antitumor activity against lung cancer cell line (A549). In: International conference on science, engineering and management research (ICSEMR 2014). IEEE, Chennai
Suwaleerat T, Thanapimmetha A, Saisriyoot M, Chisti Y, Srinophakun P (2017) Enhanced production of carotenoids and lipids by Rhodococcus opacus PD630. J Chem Technol Biotechnol 93:2160–2169. https://doi.org/10.1002/jctb.5554
CAS
Article
Google Scholar
Tajparast M, Frigon D (2015) Genome-scale metabolic model of Rhodococcus jostii RHA1 (iMT1174) to study the accumulation of storage compounds during nitrogen-limited condition. BMC Syst Biol 9:43. https://doi.org/10.1186/s12918-015-0190-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Tajparast M, Frigon D (2018) Predicting the accumulation of storage compounds by Rhodococcus jostii RHA1 in the feast-famine growth cycles using genome-scale flux balance analysis. PLoS One 13:e0191835. https://doi.org/10.1371/journal.pone.0191835
CAS
Article
PubMed
PubMed Central
Google Scholar
Takaichi S, Ishidsu JI, Seki T, Fukada S (1990) Carotenoid pigments from Rhodococcus rhodochrous RNMS1: two monocyclic carotenoids, a carotenoid monoglycoside and carotenoid glycoside monoesters. Agric Biol Chem 54:1931–1937. https://doi.org/10.1271/bbb1961.54.1931
CAS
Article
Google Scholar
Takeda M, Kurane R, Nakamura I (1991) Localization of a biopolymer produced by Rhodococcus erythropolis grown on n-pentadecane. Agric Biol Chem 55:2665–2666. https://doi.org/10.1271/bbb.1961.55.2665
CAS
Article
Google Scholar
Tao L, Cheng Q (2004) Novel beta-carotene ketolases from non-photosynthetic bacteria for canthaxanthin synthesis. Mol Gen Genomics 272:530–537. https://doi.org/10.1007/s00438-004-1038-8
CAS
Article
Google Scholar
Tao L, Picataggio S, Rouviere PE, Cheng Q (2004) Asymmetrically acting lycopene beta-cyclases (CrtLm) from non-photosynthetic bacteria. Mol Gen Genomics 271:180–188. https://doi.org/10.1007/s00438-003-0969-1
CAS
Article
Google Scholar
Thanapimmetha A, Suwaleerat T, Saisriyoot M, Chisti Y, Srinophakun P (2017) Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture. Bioprocess Biosyst Eng 40:133–143. https://doi.org/10.1007/s00449-016-1681-y
Tischler D, Niescher S, Kaschabek SR, Schlömann M (2013) Trehalose phosphate synthases OtsA1 and OtsA2 of Rhodococcus opacus 1CP. FEMS Microbiol Lett 342:113–122. https://doi.org/10.1111/1574-6968
CAS
Article
PubMed
Google Scholar
Tokumoto Y, Nomura N, Uchiyama H, Imura T, Morita T, Fukuoka T, Kitamoto D (2009) Structural characterization and surface-active properties of succinoyl trehalose lipid produced by Rhodococcus sp. SD-74. J Oleo Sci 58:97–102. https://doi.org/10.5650/jos.58.97
Tropis M, Meniche X, Wolf A, Gebhardt H, Strelkov S, Chami M, Schomburg D, Krämer R, Morbach S, Daffé M (2005) The crucial role of trehalose and structurally related oligosaccharides in the biosynthesis and transfer of mycolic acids in Corynebacterineae. J Biol Chem 280:26573–26585. https://doi.org/10.1074/jbc.M502104200
CAS
Article
PubMed
Google Scholar
Tsitko IV, Zaitsev GM, Lobanok AG, Salkinoja-Saloneni MS (1999) Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus. Appl Environ Microbiol 65:853–855
CAS
Article
Google Scholar
Urbano SB, Di Capua C, Cortez N, Farías ME, Alvarez HM (2014) Triacylglycerol accumulation and oxidative stress in Rhodococcus species: differential effects of pro-oxidants on lipid metabolism. Extremophiles 18:375–384. https://doi.org/10.1007/s00792-013-0623-8
CAS
Article
PubMed
Google Scholar
Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot scale. Appl Microbiol Biotechnol 55:547–555. https://doi.org/10.1007/s002530000576
CAS
Article
PubMed
Google Scholar
Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla H-J, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763. https://doi.org/10.1111/j.1365-2958.2004.04441.x
CAS
Article
PubMed
Google Scholar
Wang X, Wang X, Hui K, Wei W, Zhang W, Miao A, Xiao L, Yang L (2018) Highly effective polyphosphate synthesis, phosphate removal, and concentration using engineered environmental bacteria based on a simple solo medium-copy plasmid strategy. Environ Sci Technol 52:214–222. https://doi.org/10.1021/acs.est.7b04532
CAS
Article
PubMed
Google Scholar
White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp. strain PML026. J Appl Microbiol 115:744–755. https://doi.org/10.1111/jam.12287
Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Innis WE, Greer SW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968
CAS
Article
Google Scholar
Xiong X, Wang X, Chen S (2012) Engineering of a xylose metabolic pathway in Rhodococcus spp. strains. Appl Environ Microbiol 78:5483–5491. https://doi.org/10.1128/AEM.08022-11
CAS
Article
PubMed
PubMed Central
Google Scholar
Xiong X, Lian J, Yu X, Garcia-Perez M, Chen S (2016a) Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production. J Ind Microbiol Biotechnol 43:1551–1560. https://doi.org/10.1007/s10295-016-1832-9
CAS
Article
PubMed
Google Scholar
Xiong X, Wang X, Chen S (2016b) Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production. J Ind Microbiol Biotechnol 43:1017–1025. https://doi.org/10.1007/s10295-016-1778-y
CAS
Article
PubMed
Google Scholar
Yakimov MM, Giuliano L, Bruni V, Scarfì S, Golyshin PN (1999) Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol 22:249–256
CAS
PubMed
Google Scholar
Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ, Pesesky MW, Foston M, Dantas G, Moon TS (2016) Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res 44:2240–2254. https://doi.org/10.1093/nar/gkw055
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoshida N, Yano T, Kedo K, Fujiyoshi T, Nagai R, Iwano M, Taguchi E, Nishida T, Takagi H (2017) A unique intracellular compartment formed during the oligotrophic growth of Rhodococcus erythropolis N9T-4. Appl Microbiol Biotechnol 101:331–340. https://doi.org/10.1007/s00253-016-7883-z
CAS
Article
PubMed
Google Scholar
Zhang B, Ye X, Dai W, Hou W, Zuo F, Xie Y (2006) Biomolecule-assisted synthesis of single-crystalline selenium nanowires and nanoribbons via a novel flake-cracking mechanism. Nanotechnology 17:385–390. https://doi.org/10.1088/0957-4484/17/2/007
CAS
Article
Google Scholar
Zheng YT, Toyofuku M, Nomura N, Shigeto S (2013) Correlation of carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74. Anal Chem 85:7295–7301. https://doi.org/10.1021/ac401188f
CAS
Article
PubMed
Google Scholar