Abstract
Dietary glycerol supplementation in aquaculture feed is seen as an alternative and inexpensive way to fuel fish metabolism, attenuate metabolic utilization of dietary proteins and, subsequently, reduce nitrogen excretion. In this study, we evaluated the impact of dietary glycerol supplementation on nitrogen excretion of European seabass (Dicentrarchus labrax) and its effects on metabolite profile and bacterial community composition of gut digesta. These effects were evaluated in a 60-day trial with fish fed diets supplemented with 2.5% or 5% (w/w) refined glycerol and without glycerol supplementation. Nuclear magnetic resonance spectroscopy and high-throughput 16S rRNA gene sequencing were used to characterize the effects of glycerol supplementation on digesta metabolite and bacterial community composition of 6-h postprandial fish. Our results showed that ammonia excretion was not altered by dietary glycerol supplementation, and the highest glycerol dosage was associated with significant increases in amino acids and a decrease of ergogenic creatine in digesta metabolome. Concomitantly, significant decreases in putative amino acid degradation pathways were detected in the predicted metagenome analysis, suggesting a metabolic shift. Taxon-specific analysis revealed significant increases in abundance of some specific genera (e.g., Burkholderia and Vibrio) and bacterial diversity. Overall, our results indicate glycerol supplementation may decrease amino acid catabolism without adversely affecting fish gut bacterial communities.
Key points
• Glycerol can be an inexpensive and energetic alternative in fish feed formulations.
• Glycerol did not affect nitrogen excretion and gut bacteriome composition.
• Glycerol reduced uptake of amino acids and increased uptake of ergogenic creatine.
• Glycerol reduced putative amino acid degradation pathways in predicted metagenome.
This is a preview of subscription content, access via your institution.





References
Appel W (1986) Chymotrypsin: molecular and catalytic properties. Clin Biochem 19(6):317–322
Avnimelech Y (1999) Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176(3-4):227–235. https://doi.org/10.1016/s0044-8486(99)00085-x
Ballestrazzi R, Lanari D, D’Agaro E, Mion A (1994) The effect of dietary protein level and source on growth, body composition, total ammonia and reactive phosphate excretion of growing sea bass (Dicentrarchus labrax). Aquaculture 127(2):197–206. https://doi.org/10.1016/0044-8486(94)90426-X
Baron C, Coombes B (2007) Targeting bacterial secretion systems: benefits of disarmament in the microcosm. Infect Disord Drug Targets 7(1):19–27
Barret M, Egan F, O'Gara F (2013) Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environ Microbiol Rep 5(1):117–126. https://doi.org/10.1111/j.1758-2229.2012.00394.x
Bernfeld P (1951) Enzymes of starch degradation and synthesis. Adv Enzymol Relat. Areas Mol Biol 12:379–428. https://doi.org/10.1002/9780470122570.ch7
Bournaud C, Moulin L, Cnockaert M, Sd F, Prin Y, Severac D, Vandamme P (2017) Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol 67(2):432–440. https://doi.org/10.1099/ijsem.0.001648
Bukin YS, Galachyants YP, Morozov IV, Bukin SV, Zakharenko AS, Zemskaya TI (2019) The effect of 16S rRNA region choice on bacterial community metabarcoding result. Sci Data 6(1):190007. https://doi.org/10.1038/sdata.2019.7
Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5(2):89–96. https://doi.org/10.1890/1540-9295(2007)5[89:hwotro]2.0.co;2
Burns AF, Gatlin DM (2019) Dietary creatine requirement of red drum (Sciaenops ocellatus) and effects of water salinity on responses to creatine supplementation. Aquaculture 506:320–324. https://doi.org/10.1016/j.aquaculture.2019.03.059
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303
Code of Federal Regulations (2018) Title 21 - Food and drugs, Chapter 1 - Food and Drug Administration, Department of Healt and Human Services, Subchapter E- Animal drugs, feed and related products, Subpart B—general purpose food additives, Sec 582.1320, Glycerin. Acessed Jan 2020
Chauhan A, Singh R (2019) Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis 77(2):99–113. https://doi.org/10.1007/s13199-018-0580-1
Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–W494
Chun BH, Lee Y, Jin HM, Jeon CO (2017) Cloacibacterium caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 67(6):1688–1692. https://doi.org/10.1099/ijsem.0.001841
Clarke SF, Murphy EF, Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63(12):1913–1920. https://doi.org/10.1136/gutjnl-2013-306541
Cleary DFR, Becking LE, Polónia ARM, Freitas RM, Gomes NCM (2015) Composition and predicted functional ecology of mussel-associated bacteria in Indonesian marine lakes. Antonie van Leeuwenhoek 107(3):821–834. https://doi.org/10.1007/s10482-014-0375-1
Cleusix V, Lacroix C, Vollenweider S, Le Blay G (2008) Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human feces. FEMS Microbiol Ecol 63(1):56–64. https://doi.org/10.1111/j.1574-6941.2007.00412.x
Coelho FJRC, Cleary DFR, Costa R, Ferreira M, Polónia ARM, Silva AMS, Simões MMQ, Oliveira V, Gomes NCM (2016) Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution. Molecular Ecology 25(18):4645–4659. https://doi.org/10.1111/mec.13779
de Campos SB, Lardi M, Gandolfi A, Eberl L, Pessi G (2017) Mutations in two Paraburkholderia phymatum type VI secretion systems cause reduced fitness in interbacterial competition. Front Microbiol 8(2473). https://doi.org/10.3389/fmicb.2017.02473
De Schryver P, Dierckens K, Bahn Thi QQ, Amalia R, Marzorati M, Bossier P, Boon N, Verstraete W (2011) Convergent dynamics of the juvenile European sea bass gut microbiota induced by poly-β-hydroxybutyrate. Environ Microbiol 13(4):1042–1051. https://doi.org/10.1111/j.1462-2920.2010.02410.x
De Weirdt R, Possemiers S, Vermeulen G, Moerdijk-Poortvliet TCW, Boschker HTS, Verstraete W, Van de Wiele T (2010) Human faecal microbiota display variable patterns of glycerol metabolism. FEMS Microbiol Ecol 74(3):601–611. https://doi.org/10.1111/j.1574-6941.2010.00974.x
De Weirdt R, Crabbé A, Roos S, Vollenweider S, Lacroix C, van Pijkeren JP, Britton RA, Sarker S, Van de Wiele T, Nickerson CA (2012) Glycerol supplementation enhances L. reuteri's protective effect against S. Typhimurium colonization in a 3-D model of colonic epithelium. PLoS ONE 7(5):e37116–e37116. https://doi.org/10.1371/journal.pone.0037116
Defoirdt T, Halet D, Vervaeren H, Boon N, Van de Wiele T, Sorgeloos P, Bossier P, Verstraete W (2007) The bacterial storage compound poly-β-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environ Microbiol 9(2):445–452
Dobritsa AP, Samadpour M (2016) Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 66(8):2836–2846. https://doi.org/10.1099/ijsem.0.001065
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604
Eiras CE, Barbosa LP, Marques JA, Araújo FL, Lima BS, Zawadzki F, Perotto D, Prado IN (2014) Glycerine levels in the diets of crossbred bulls finished in feedlot: apparent digestibility, feed intake and animal performance. Anim Feed Sci Tech 197:222–226. https://doi.org/10.1016/j.anifeedsci.2014.07.004
El-Sayed A-FM (1999) Alternative dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture 179(1):149–168. https://doi.org/10.1016/S0044-8486(99)00159-3
Elton CS (1958) Ecology of invasions by animals and plants. Springer, Boston, MA
Fan TW-M (1996) Metabolite profiling by one-and two-dimensional NMR analysis of complex mixtures. Prog Nucl Mag Res Sp 28(2):161–219
FAO (2018) The state of world fisheries and aquaculture 2018: meeting the sustainable development goals, 2018th edn. FAO, Rome, Italy
Fargione JE, Tilman D (2005) Diversity decreases invasion via both sampling and complementarity effects. Ecol Lett 8(6):604–611
Gatesoupe F-J, Fauconneau B, Deborde C, Madji Hounoum B, Jacob D, Moing A, Corraze G, Médale F (2018) Intestinal microbiota in rainbow trout, Oncorhynchus mykiss, fed diets with different levels of fish-based and plant ingredients: a correlative approach with some plasma metabolites. Aquac Nut 24(5):1563–1576. https://doi.org/10.1111/anu.12793
Gaye-Siessegger J, Focken U, Becker K (2006) Effect of dietary protein/carbohydrate ratio on activities of hepatic enzymes involved in the amino acid metabolism of Nile tilapia, Oreochromis niloticus (L.). Fish Physiol Biochem 32(4):275–282. https://doi.org/10.1007/s10695-006-9000-1
Geurden I, Mennigen J, Plagnes-Juan E, Veron V, Cerezo T, Mazurais D, Zambonino-Infante J, Gatesoupe J, Skiba-Cassy S, Panserat S (2014) High or low dietary carbohydrate:protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. J Exp Biol 217(19):3396–3406. https://doi.org/10.1242/jeb.106062
Gomes NC, Cleary DF, Pinto FN, Egas C, Almeida A, Cunha A, Mendonça-Hagler LC, Smalla K (2010) Taking root: enduring effect of rhizosphere bacterial colonization in mangroves. PLoS ONE 5(11):e14065
Gomez-Gil B, Thompson FL, Thompson CC, Swings J (2003) Vibrio rotiferianus sp. nov., isolated from cultures of the rotifer Brachionus plicatilis. Int J Syst Evol Microbiol 53(1):239–243. https://doi.org/10.1099/ijs.0.02430-0
Halet D, Defoirdt T, Van Damme P, Vervaeren H, Forrez I, Van de Wiele T, Boon N, Sorgeloos P, Bossier P, Verstraete W (2007) Poly-β-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. FEMS Microbiol Ecol 60(3):363–369
Hamlin HJ (2006) Nitrate toxicity in Siberian sturgeon (Acipenser baeri). Aquaculture 253(1):688–693. https://doi.org/10.1016/j.aquaculture.2005.08.025
Hamlin HJ, Moore BC, Edwards TM, Larkin ILV, Boggs A, High WJ, Main KL, Guillette LJ (2008) Nitrate-induced elevations in circulating sex steroid concentrations in female Siberian sturgeon (Acipenser baeri) in commercial aquaculture. Aquaculture 281(1):118–125. https://doi.org/10.1016/j.aquaculture.2008.05.030
Hartley MD, Imperiali B (2012) At the membrane frontier: A prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Arch Biochem Biophys 517(2):83–97. https://doi.org/10.1016/j.abb.2011.10.018
Hayashi A, Mikami Y, Miyamoto K, Kamada N, Sato T, Mizuno S, Naganuma M, Teratani T, Aoki R, Fukuda S, Suda W, Hattori M, Amagai M, Ohyama M, Kanai T (2017) Intestinal dysbiosis and biotin deprivation induce alopecia through overgrowth of Lactobacillus murinus in mice. Cell Rep 20(7):1513–1524. https://doi.org/10.1016/j.celrep.2017.07.057
Heuston S, Begley M, Gahan CGM, Hill C (2012) Isoprenoid biosynthesis in bacterial pathogens. Microbiology 158(6):1389–1401. https://doi.org/10.1099/mic.0.051599-0
James BW, Goodband RD, Unruh JA, Tokach MD, Nelssen JL, Dritz SS, O’Quinn PR, Andrews BS (2002) Effect of creatine monohydrate on finishing pig growth performance, carcass characteristics and meat quality. Anim Feed Sci Tech 96(3):135–145. https://doi.org/10.1016/S0377-8401(01)00346-7
Jung B, Batal AB (2011) Nutritional and feeding value of crude glycerin for poultry. 1. Nutritional value of crude glycerin. J Appl Poult Res 20(2):162–167. https://doi.org/10.3382/japr.2010-00235
Kraemer WJ, Volek JS (1999) Creatine supplementation: its role in human performance. Clin Sports Med 18(3):651–666. https://doi.org/10.1016/S0278-5919(05)70174-5
Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R (2011) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics Unit 10:7. https://doi.org/10.1002/0471250953.bi1007s36
Kurahashi K, Hisada K, Kashiwagi M, Yoshihara S, Nomura T, Tokumoto H (2018) Analysis of the continuous bioconversion of glycerol by promotion of highly glycerol-resistant glycerol-degrading bacteria. Waste Biomass Valori 10:3321–3330. https://doi.org/10.1007/s12649-018-0344-4
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotech 31:814–821. https://doi.org/10.1038/nbt.2676
Li MH, Minchew CD, Oberle DF, Robinson EH (2010) Evaluation of glycerol from biodiesel production as a feed ingredient for channel catfish, Ictalurus punctatus. J World Aquac Soc 41(1):130–136. https://doi.org/10.1111/j.1749-7345.2009.00320.x
López-Lara IM, Geiger O (2017) Bacterial lipid diversity. BBA-Mol Cell Biol L 1862(11):1287–1299. https://doi.org/10.1016/j.bbalip.2016.10.007
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193(1):265–275
Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I (2015) Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet 6(148). https://doi.org/10.3389/fgene.2015.00148
McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217
Metón I, Mediavilla D, Caseras A, Cantó E, Fernández F, Baanante IV (1999) Effect of diet composition and ration size on key enzyme activities of glycolysis–gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). Br J Nutr 82(3):223–232. https://doi.org/10.1017/s0007114599001403
Monsees H, Klatt L, Kloas W, Wuertz S (2017) Chronic exposure to nitrate significantly reduces growth and affects the health status of juvenile Nile tilapia (Oreochromis niloticus L.) in recirculating aquaculture systems. Aquac Res 48(7):3482–3492. https://doi.org/10.1111/are.13174
Naeem S, Li S (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509. https://doi.org/10.1038/37348
Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci USA 106(36):15103–15110. https://doi.org/10.1073/pnas.0905235106
Nazir R, Warmink JA, Voordes DC, van de Bovenkamp HH, Jan Dirk van Elsas (2013) Inhibition of Mushroom Formation and Induction of Glycerol Release—Ecological Strategies of Burkholderia terrae BS001 to Create a Hospitable Niche at the Fungus Lyophyllum sp. Strain Karsten. Microb Ecol 65(1):245–254
Nie L, Zhou Q-J, Qiao Y, Chen J (2017) Interplay between the gut microbiota and immune responses of ayu (Plecoglossus altivelis) during Vibrio anguillarum infection. Fish Shellfish Immun 68:479–487
Nouha K, Hoang N, Tyagi RD (2016a) Fourier transform infrared spectroscopy and liquid chromatography–mass spectrometry study of extracellular polymer substances produced on secondary sludge fortified with crude glycerol. J Mater Sci Eng 5(3):2169-0022.1000240
Nouha K, Kumar RS, Tyagi RD (2016b) Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods. Bioresour Technol 212:120–129. https://doi.org/10.1016/j.biortech.2016.04.021
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, Simpson GL, Solymos P, Stevens M, Wagner H (2015) vegan: Community Ecology Package. R package version 2.0-10. 2013. In: https://CRAN.R-project.org/package = vegan (ed).
Oleoline Limited (2018) Glycerine market report. https://www.oleoline.com/. Acessed Jan 2020
Parma L, Candela M, Soverini M, Turroni S, Consolandi C, Brigidi P, Mandrioli L, Sirri R, Fontanillas R, Gatta PP, Bonaldo A (2016) Next-generation sequencing characterization of the gut bacterial community of gilthead sea bream (Sparus aurata, L.) fed low fishmeal based diets with increasing soybean meal levels. Anim Feed SciTechnol 222:204–216. https://doi.org/10.1016/j.anifeedsci.2016.10.022
Peres H, Oliva-Teles A (2001) Effect of dietary protein and lipid level on metabolic utilization of diets by european sea bass (Dicentrarchus labrax) juveniles. Fish Physiol Biochem 25:269–275. https://doi.org/10.1023/A:1023239819048
Poli A, Romano I, Cordella P, Orlando P, Nicolaus B, Ceschi Berrini C (2009) Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Extremophiles 13(6):867–874. https://doi.org/10.1007/s00792-009-0274-y
Prathomya P, Prisingkorn W, Jakovlić I, Deng F-Y, Zhao Y-H, Wang W-M (2017) 1H NMR-based metabolomics approach reveals metabolic alterations in response to dietary imbalances in Megalobrama amblycephala. Metabolomics 13(2):17. https://doi.org/10.1007/s11306-016-1158-7
R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria (https://www.Rproject.org/). Acessed Jan 2020
Ram SK, Kumar LR, Tyagi RD, Drogui P (2018) Techno-economic evaluation of simultaneous production of extra-cellular polymeric substance (EPS) and lipids by Cloacibacterium normanense NK6 using crude glycerol and sludge as substrate. Water Sci Technol 77(9):2228–2241. https://doi.org/10.2166/wst.2018.140
Ramos-Pinto L, Lopes G, Sousa V, Castro LFC, Schrama D, Rodrigues P, Valente LMP (2019) Dietary creatine supplementation in gilthead seabream (Sparus aurata) increases dorsal muscle area and the expression of myod1 and capn1 genes. Front Endocrinol 10:161–161. https://doi.org/10.3389/fendo.2019.00161
Ringø E, Gatesoupe F-J (1998) Lactic acid bacteria in fish: a review. Aquaculture 160(3):177–203. https://doi.org/10.1016/S0044-8486(97)00299-8
Rocha F, Dias J, Geurden I, Dinis MT, Panserat S, Engrola S (2016) Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: an in vivo approach using 14C-starch. Comp Biochem Physiol Part A Mol Integr Physiol 201:189–199. https://doi.org/10.1016/j.cbpa.2016.07.016
Rodríguez-Contreras A, Koller M, Miranda-de Sousa Dias M, Calafell-Monfort M, Braunegg G, Marqués-Calvo MS (2015) Influence of glycerol on poly(3-hydroxybutyrate) production by Cupriavidus necator and Burkholderia sacchari. Biochem Eng J 94:50–57. https://doi.org/10.1016/j.bej.2014.11.007
Rodríguez-Meléndez R, Cano S, Méndez ST, Velázquez A (2001) Biotin regulates the genetic expression of holocarboxylase synthetase and mitochondrial carboxylases in rats. J Nutrit 131(7):1909–1913
Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16(5):565–574. https://doi.org/10.1039/a709175c
Roy AS, Gibbons SM, Schunck H, Owens S, Caporaso JG, Sperling M, Nissimov JI, Romac S, Bittner L, Mühling M, Riebesell U, LaRoche J, Gilbert JA (2013) Ocean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosms. Biogeosciences 10(1):555–566. https://doi.org/10.5194/bg-10-555-2013
Rungruangsak-Torrissen K (2007) Digestive efficiency, growth and qualities of muscle and oocyte in Atlantic salmon (Salmo salar L.) fed diets with krill meal as an alternative protein source. J Food Biochem 31:509–540
Rungruangsak-Torrissen K, S A (2000) Protease activities, plasma free amino acids and insulin at different ages of Atlantic salmon (Salmo salar L.) with genetically different trypsin isozymes. Fish Physiol Biochem 22:337–347. https://doi.org/10.1023/A:1007864413112
Sawabe T, Kita-Tsukamoto K, Thompson FL (2007) Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 189(21):7932–7936. https://doi.org/10.1128/jb.00693-07
Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5(429). https://doi.org/10.3389/fgene.2014.00429
Schrader KK, Davidson JW, Summerfelt ST (2013) Evaluation of the impact of nitrate-nitrogen levels in recirculating aquaculture systems on concentrations of the off-flavor compounds geosmin and 2-methylisoborneol in water and rainbow trout (Oncorhynchus mykiss). Aquac Eng 57:126–130. https://doi.org/10.1016/j.aquaeng.2013.07.002
Schwarz S, West TE, Boyer F, Chiang W-C, Carl MA, Hood RD, Rohmer L, Tolker-Nielsen T, Skerrett SJ, Mougous JD (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLOS Pathog 6(8):e1001068. https://doi.org/10.1371/journal.ppat.1001068
Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O, Goodacre R, Griffin JL (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3(3):211–221
Tomasso JR (1994) Toxicity of nitrogenous wastes to aquaculture animals. Rev Fish Sci 2(4):291–314. https://doi.org/10.1080/10641269409388560
Torrissen KR, Lied E, Espe M (1994) Differences in digestion and absorption of dietary protein in Atlantic salmon (Salmo salar) with genetically different trypsin isozymes. J Fish Biol 45(6):1087–1104. https://doi.org/10.1111/j.1095-8649.1994.tb01075.x
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2008) A core gut microbiome in obese and lean twins. Nature 457:480–484. https://doi.org/10.1038/nature07540
United Nations General Assembly (2015) Transforming our world: the 2030 agenda for sustainable development. Division for Sustainable Development Goals: New York, NY, USA. https://www.sustainabledevelopment.un.org. Acessed Jan 2020
Van Cleef E, Uwituze S, Alvarado C, Miller K, Bibber-Krueger V, Aperce C, Higgins JJ, Drouillard JS (2013) Crude glycerin improves feed efficiency in finishing heifers. Paper presented at the Cattlemen's Day, 2013, Kansas State University, Manhattan, KS, March 1, 2013
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. https://doi.org/10.1128/aem.00062-07
Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S (2009) gplots: Various R programming tools for plotting data. R package version 2(4):1
Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670
Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc bioinformatics 55(1):14.10.1–14.10.91
Xiong J-B, Nie L, Chen J (2019) Current understanding on the roles of gut microbiota in fish disease and immunity. Zool Res 40(2):70–76. https://doi.org/10.24272/j.issn.2095-8137.2018.069
Yang W, Zheng C, Zheng Z, Wei Y, Lu K, Zhu J (2018) Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability. Ecotox Environ Safe 156:366–374. https://doi.org/10.1016/j.ecoenv.2018.03.043
Yang X, Song X, Peng L, Hallerman E, Huang Z (2019) Effects of nitrate on aquaculture production, blood and histological markers and liver transcriptome of Oplegnathus punctatus. Aquaculture 501:387–396. https://doi.org/10.1016/j.aquaculture.2018.11.048
Funding
This study was funded by Fundação para a Ciência e Tecnologia (FCT; Portugal) through national funds with co-funding from European Regional Development Fund (ERDF), within the Portugal 2020 Partnership Agreement, and COMPETE 2020 [research grant to IV (POCI-01-0145-FEDER-016828-PTDC/CVT-NUT/2851/2014) and individual grant to MP through Centro2020 (ReNATURE; Centro-01-0145-FEDER-000007)]; and by MAR2020, Operational Programme for the European Maritime and Fisheries Fund (EMFF) within the project AquaHeal (MAR-02.01.01-FEAMP-0031). This study was also financially supported by Strategic Funding of research units [UID/AMB/50017/2019 for CESAM, UID/BIA/04004/2019 for CFE and UID/Multi/04423/2019 for CIIMAR], which is co-funded by national funds and ERDF within the PT2020 Partnership Agreement and Compete 2020.
Author information
Authors and Affiliations
Contributions
IV, LM, and ROAO conceived the idea and designed the experimental trial. AL, FJRC, and NCMG analyzed the microbiome dataset. IV, MP, and LCT analyzed the metabolome dataset. All authors contributed to writing of the manuscript and gave final approval for publication.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(PDF 592 kb)
Rights and permissions
About this article
Cite this article
Louvado, A., Coelho, F.J.R.C., Palma, M. et al. Effect of glycerol feed-supplementation on seabass metabolism and gut microbiota. Appl Microbiol Biotechnol 104, 8439–8453 (2020). https://doi.org/10.1007/s00253-020-10809-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-020-10809-3
Keywords
- 1H-NMR
- Creatinine
- Metabolomics
- Chyme
- PICRUSt
- Dicentrarchus labrax