Abstract
Ulcerative colitis (UC), a kind of inflammatory bowel disease, is generally characterized by chronic, persistent, relapsing, and nonspecific ulceration of the bowel, which is widespread in the world. Although the pathogenesis of UC is multifactorial, growing evidence has demonstrated that gut microbiota and its metabolites are closely related to the development of UC. Lizhong decoction (LZD), a well-known classical Chinese herbal prescription, has been used to clinically treat UC for long time, but its mechanism is not clear. In this study, 16S rRNA gene sequencing combining with untargeted metabolomics profiling was used to investigate how LZD worked. Results indicated that LZD could shape the gut microbiota structure and modify metabolic profiles. The abundance of opportunistic pathogens such as Clostridium sensu stricto 1, Enterobacter, and Escherichia-Shigella correlated with intestinal inflammation markedly decreased, while the levels of beneficial bacteria including Blautia, Muribaculaceae_norank, Prevotellaceae UCG-001, and Ruminiclostridium 9 elevated in various degrees. Additionally, fecal metabolite profiles reflecting microbial activities showed that adenosine, lysoPC(18:0), glycocholic acid, and deoxycholic acid notably decreased, while cholic acid, α-linolenic acid, stearidonic acid, and l-tryptophan significantly increased after LZD treatment. Hence, based on the systematic analysis of 16S rRNA gene sequencing and metabolomics of gut flora, the results provided a novel insight that microbiota and its metabolites might be potential targets for revealing the mechanism of LZD on amelioration of UC.
Key Points
• The potential mechanism of LZD on the amelioration of UC was firstly investigated.
• LZD could significantly shape the structure of gut microbiota.
• LZD could notably modulate the fecal metabolic profiling of UC mice.

Graphical abstract







References
Adams SM, Bornemann PH (2013) Ulcerative colitis. Am Fam Physician 87:699–705. https://doi.org/10.0000/PMID23939448
Autenrieth DM, Baumgart DC (2012) Toxic megacolon. Inflamm Bowel Dis 18:584–591. https://doi.org/10.1002/ibd.21847
Basso PJ, Câmara NOS, Sales-Campos H (2019) Microbial-based therapies in the treatment of inflammatory bowel disease - an overview of human studies. Front Pharmacol 9:1571. https://doi.org/10.3389/fphar.2018.01571
Bianchi L, Gaiani F, Vincenzi F, Kayali S, Di Mario F, Leandro G, De’ Angelis GL, Ruberto C (2018) Hemolytic uremic syndrome: differential diagnosis with the onset of inflammatory bowel diseases. Acta Biomed 89:153–157. https://doi.org/10.23750/abm.v89i9-S.7911
Canfora EE, Meex RCR, Venema K, Blaak EE (2019) Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol 15:261–273. https://doi.org/10.1038/s41574-019-0156-z
Chen L, Wang W, Zhou R, Ng SC, Li J, Huang M, Zhou F, Wang X, Shen B, Kamm MA, Wu K, Xia B (2014) Characteristics of fecal and mucosa-associated microbiota in Chinese patients with inflammatory bowel disease. Medicine (Baltimore) 93:e51. https://doi.org/10.1097/MD.0000000000000051
Chen ML, Takeda K, Sundrud MS (2019) Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol 12:851–861. https://doi.org/10.1038/s41385-019-0162-4
Cheon JH (2013) Genetics of inflammatory bowel diseases: a comparison between western and eastern perspectives. J Gastroenterol Hepatol 28:220–226. https://doi.org/10.1111/jgh.12053
Downes J, Dewhirst FE, Tanner AC, Wade WG (2013) Description of Alloprevotella rava gen. nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov. Int J Syst Evol Microbiol 63:1214–1218. https://doi.org/10.1099/ijs.0.041376-0
Durand GA, Pham T, Ndongo S, Traore SI, Dubourg G, Lagier JC, Michelle C, Armstrong N, Fournier PE, Raoult D, Million M (2017) Blautia massiliensis sp. nov. isolated from a fresh human fecal sample and emended description of the genus Blautia. Anaerobe 43:47–55. https://doi.org/10.1016/j.anaerobe.2016.12.001
Eom SJ, Hwang JE, Kim KT, Paik HD (2017) Antibacterial effects against various foodborne pathogens and sensory properties of yogurt supplemented with Panax ginseng Marc extract. Korean J Food Sci Anim Resour 37:787–791. https://doi.org/10.5851/kosfa.2017.37.5.787
Ezzat SM, Ezzat MI, Okba MM, Menze ET, Abdel-Naim AB (2018) The hidden mechanism beyond ginger ( Zingiber officinale, Rosc.) potent, in vivo, and, in vitro, anti-inflammatory activity. J Ethnopharmacol 214:113–123. https://doi.org/10.1016/j.jep.2017.12.019
Fiorucci S, Distrutti E (2015) Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med 21:702–714. https://doi.org/10.1016/j.molmed.2015.09.001
Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S, Klomp LW, Siersema PD, Schipper ME, Danese S, Penna G, Laverny G, Adorini L, Moschetta A, van Mil SW (2011) Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60:463–472. https://doi.org/10.1136/gut.2010.212159
Garg M, Hendy P, Ding JN, Shaw S, Hold G, Hart A (2018) The effect of vitamin D on intestinal inflammation and faecal microbiota in patients with ulcerative colitis. J Crohns Colitis 12:963–972. https://doi.org/10.1093/ecco-jcc/jjy052
Gaston MA (1988) Enterobacter: an emerging nosocomial pathogen. J Hosp Infect 11:197–208. https://doi.org/10.1016/0195-6701(88)90098-9
Gonçalves P, Araújo JR, Di Santo JP (2018) A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis 24:558–572. https://doi.org/10.1093/ibd/izx029
Gräler MH, Goetzl EJ (2002) Lysophospholipids and their G protein-coupled receptors in inflammation and immunity. Biochim Biophys Acta 1582:168–174. https://doi.org/10.1016/s1388-1981(02)00152-x
Gu S, Li L, Huang H, Wang B, Zhang T (2019) Antitumor, antiviral, and anti-inflammatory efficacy of essential oils from Atractylodes macrocephala Koidz. produced with different processing methods. Molecules 24. https://doi.org/10.3390/molecules24162956
Guo M, Li Z (2019) Polysaccharides isolated from Nostoc commune Vaucher inhibit colitis-associated colon tumorigenesis in mice and modulate gut microbiota. Food Funct 10:6873–6881. https://doi.org/10.1039/c9fo00296k
Han YD, Al Bandar MH, Dulskas A, Cho MS, Hur H, Min BS, Lee KY, Kim NK (2017) Prognosis of ulcerative colitis colorectal cancer vs. sporadic colorectal cancer: propensity score matching analysis. BMC Surg 17:28. https://doi.org/10.1186/s12893-017-0224-z
Holscher HD (2017) Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8:172–184. https://doi.org/10.1080/19490976.2017.1290756
Hong H, Lee JH, Kim SK (2018) Phytochemicals and antioxidant capacity of some tropical edible plants. Asian-Australas J Anim Sci 31:1677–1684. https://doi.org/10.5713/ajas.17.0903
Jia W, Xie G, Jia W (2018) Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15:111–128. https://doi.org/10.1038/nrgastro.2017
Kim CJ, Kovacs-Nolan JA, Yang C, Archbold T, Fan MZ, Mine Y (2010) L-Tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulfate (DSS)-induced colitis. J Nutr Biochem 21:468–475. https://doi.org/10.1016/j.jnutbio.2009.01.019
Kong W, Huang C, Tang Y, Zhang D, Wu Z, Chen X (2017) Effect of Bacillus subtilis on Aeromonas hydrophila -induced intestinal mucosal barrier function damage and inflammation in grass carp ( Ctenopharyngodon Idella ). Sci Rep 7(1):1588. https://doi.org/10.1038/s41598-017-01336-9
Kume K, Watanabe T, Oshima J, Yoshikawa I, Harada M (2014) Rectal perforation caused by mesalazine enema in a patient with ulcerative colitis. Endoscopy 46(Suppl 1 UCTN):E190. https://doi.org/10.1055/s-0034-1365148
Lagkouvardos I, Lesker TR, Hitch TCA, Gálvez EJC, Smit N, Neuhaus K, Wang J, Baines JF, Abt B, Stecher B, Overmann J, Strowig T, Clavel T (2019) Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7:28. https://doi.org/10.1186/s40168-019-0637-2
Lam P, Cheung F, Tan HY, Wang N, Yuen MF, Feng Y (2016) Hepatoprotective effects of Chinese medicinal herbs: a focus on anti-inflammatory and anti-oxidative activities. Int J Mol Sci 17:465. https://doi.org/10.3390/ijms17040465
Lee KS, Palatinszky M, Pereira FC, Nguyen J, Fernandez VI, Mueller AJ, Menolascina F, Daims H, Berry D, Wagner M, Stocker R (2019) An automated Raman-based platform for the sorting of live cells by functional properties. Nat Microbiol 4:1035–1048. https://doi.org/10.1038/s41564-019-0394-9
Leonart LP, Gasparetto JC, Pontes FLD, Cerqueira LB, de Francisco TMG, Pontarolo R (2017) New metabolites of coumarin detected in human urine using ultra performance liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry. Molecules 22:2031. https://doi.org/10.3390/molecules22112031
Li X, Song P, Li J, Tao Y, Li G, Li X, Yu Z (2017) The disease burden and clinical characteristics of inflammatory bowel disease in the Chinese population: a systematic review and meta-analysis. Int J Environ Res Public Health 14. https://doi.org/10.3390/ijerph14030238
Li Z, Li J, Zhang S, Chen G, Chi S, Li X, Guo F, Zhu J, Sun B (2019) Metabolomics analysis of gut barrier dysfunction in a trauma-hemorrhagic shock rat model. Biosci Rep 39:BSR20181215. https://doi.org/10.1042/BSR20181215
Lin C, Wan J, Su Y, Zhu W (2018) Effects of early intervention with maternal fecal microbiota and antibiotics on the gut microbiota and metabolite profiles of piglets. Metabolites 8:89. https://doi.org/10.3390/metabo8040089
Ma B, Kan WL, Zhu H, Li SL, Lin G (2017) Sulfur fumigation reducing systemic exposure of ginsenosides and weakening immunomodulatory activity of ginseng. J Ethnopharmacol 195:222–230. https://doi.org/10.1016/j.jep.2016.11.023
Magro F, Gionchetti P, Eliakim R, Ardizzone S, Armuzzi A, Barreiro-de Acosta M, Burisch J, Gecse KB, Hart AL, Hindryckx P, Langner C, Limdi JK, Pellino G, Zagórowicz E, Raine T, Harbord M, Rieder F (2017) European evidence-based consensus on the diagnosis and management of ulcerative colitis: definitions and diagnosis. J Crohns Colitis 11:649–670. https://doi.org/10.1093/ecco-jcc/jjx008
Maloy KJ, Powrie F (2011) Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474:298–306. https://doi.org/10.1038/nature10208
Marineaţă A, Rezuş E, Mihai C, Prelipcean CC (2017) Extra intestinal manifestations and complications in inflammatory bowel disease. Rev Med Chir Soc Med Nat Iasi 118:279–288. https://doi.org/10.1111/j.1365-2036.2006.03021.x
Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286. https://doi.org/10.1038/nature08530
Monk JM, Lepp D, Zhang CP, Wu W, Zarepoor L, Lu JT, Pauls KP, Tsao R, Wood GA, Robinson LE, Power KA (2016) Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation. J Nutr Biochem 28:129–139. https://doi.org/10.1016/j.jnutbio.2015.10.014
Ng SC, Tang W, Ching JY, Wong M, Chow CM, Hui AJ, Wong TC, Leung VK, Tsang SW, Yu HH, Li MF, Ng KK, Kamm MA, Studd C, Bell S, Leong R, de Silva HJ, Kasturiratne A, Mufeena MNF, Ling KL, Ooi CJ, Tan PS, Ong D, Goh KL, Hilmi I, Pisespongsa P, Manatsathit S, Rerknimitr R, Aniwan S, Wang YF, Ouyang Q, Zeng Z, Zhu Z, Chen MH, Hu PJ, Wu K, Wang X, Simadibrata M, Abdullah M, Wu JC, Sung JJY, Chan FKL (2013) Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacifc Crohn’s and colitis epidemiology study. Gastroenterology 145:158–165.e2. https://doi.org/10.1053/j.gastro.2013.04.007
Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JCY, Chan FKL, Sung JJY, Kaplan GG (2018) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390:2769–2778. https://doi.org/10.1016/S0140-6736(17)32448-0
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Wi J, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267. https://doi.org/10.1126/science.1223813
Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A (2018) Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 11:1–10. https://doi.org/10.1007/s12328-017-0813-5
Panés J, Alfaro I (2017) New treatment strategies for ulcerative colitis. Expert Rev Clin Immunol 13:963–973. https://doi.org/10.1080/1744666X.2017.1343668
Peng Y, Yan Y, Wan P, Chen D, Ding Y, Ran L, Mi J, Lu L, Zhang Z, Li X, Zeng X, Cao Y (2019) Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radic Biol Med 136:96–108. https://doi.org/10.1016/j.freeradbiomed.2019.04.005
Reifen R, Karlinsky A, Stark AH, Berkovich Z, Nyska A (2015) α-Linolenic acid (ALA) is an anti-inflammatory agent in inflammatory bowel disease. J Nutr Biochem 26:1632–1640. https://doi.org/10.1016/j.jnutbio.2015.08.006
Rivera-Chávez F, Zhang LF, Faber F, Lopez CA, Byndloss MX, Olsan EE, Xu G, Velazquez EM, Lebrilla CB, Winter SE, Bäumler AJ (2016) Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe 19:443–454. https://doi.org/10.1016/j.chom.2016.03.004
Rosen MJ, Karns R, Vallance JE, Bezold R, Waddell A, Collins MH, Haberman Y, Minar P, Baldassano RN, Hyams JS, Baker SS, Kellermayer R, Noe JD, Griffiths AM, Rosh JR, Crandall WV, Heyman MB, Mack DR, Kappelman MD, Markowitz J, Moulton DE, Leleiko NS, Walters TD, Kugathasan S, Wilson KT, Hogan SP, Denson LA (2017) Mucosal expression of type 2 and type 17 immune response genes distinguishes ulcerative colitis from colon-only Crohn’s disease in treatment-naive pediatric patients. Gastroenterology 152:1345–1357.e7. https://doi.org/10.1053/j.gastro.2017.01.016
Sairenji T, Collins KL, Evans DV (2017) An update on inflammatory bowel disease. Primary Care 44:673–692. https://doi.org/10.1016/j.pop.2017.07.010
Sasaki M, Klapproth JM (2012) The role of bacteria in the pathogenesis of ulcerative colitis. J Signal Transduct 2012:704953–704956. https://doi.org/10.1155/2012/704953
Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A (2015) The human gut microbiota and virome: potential therapeutic implications. Dig Liver Dis 47:1007–1012. https://doi.org/10.1016/j.dld.2015.07.008
Schirmer M, Garner A, Vlamakis H, Xavier RJ (2019) Microbial genes and pathways in inflammatory bowel diseas. Nat Rev Microbiol 17:497–511. https://doi.org/10.1038/s41579-019-0213-6
Shen Y, Cui X, Jiang S, Qian DW, Duan JA (2019) Comparative pharmacokinetics of nine major bioactive components in normal and ulcerative colitis rats after oral administration of Lizhong decoction extracts by UPLC-TQ-MS/MS. Biomed Chromatogr 33:e4521. https://doi.org/10.1002/bmc.4521
Shouval DS, Rufo PA (2017) The role of environmental factors in the pathogenesis of inflammatory bowel diseases: a review. JAMA Pediatr 171:999–1005. https://doi.org/10.1001/jamapediatrics.2017.2571
da Silva BC, Lyra AC, Rocha R, Santana GO (2014) Epidemiology, demographic characteristics and prognostic predictors of ulcerative colitis. World J Gastroenterol 20:9458–9467. https://doi.org/10.3748/wjg.v20.i28.9458
Skelly AN, Sato Y, Kearney S, Honda K (2019) Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol 19:305–323. https://doi.org/10.1038/s41577-019-0144-5
Sofia MA, Ciorba MA, Meckel K, Lim CK, Guillemin GJ, Weber CR, Bissonnette M, Pekow JR (2018) Tryptophan metabolism through the kynurenine pathway is associated with endoscopic inflammation in ulcerative colitis. Inflamm Bowel Dis 24:1471–1480. https://doi.org/10.1093/ibd/izy103
Sung J, Jeon H, Kim IH, Jeong HS, Lee J (2017) Anti-inflammatory effects of stearidonic acid mediated by suppression of NF-κB and MAP-kinase pathways in macrophages. Lipids 52:781–787. https://doi.org/10.1007/s11745-017-4278-6
Thiyagarajan P, Chandrasekaran CV, Deepak HB, Agarwal A (2011) Modulation of lipopolysaccharide-induced pro-inflammatory mediators by an extract of Glycyrrhiza glabra and its phytoconstituents. Inflammopharmacology 19:235–241. https://doi.org/10.1007/s10787-011-0080-x
Troncone E, Monteleone G (2017) The safety of non-biological treatments in ulcerative colitis. Expert Opin Drug Saf 16:779–789. https://doi.org/10.1080/14740338.2017.1340936
Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombe JF (2017) Ulcerative colitis. Lancet 389:1756–1770. https://doi.org/10.1016/S0140-6736(16)32126-2
Vegh Z, Kurti Z, Lakatos PL (2017) Epidemiology of inflammatory bowel diseases from west to east. J Dig Dis 18:92–98. https://doi.org/10.1111/1751-2980.12449
Wang Z, Elekwachi C, Jiao J, Wang M, Tang S, Zhou C, Tan Z, Forster RJ (2017) Changes in metabolically active bacterial community during rumen development, and their alteration by rhubarb root powder revealed by 16S rRNA amplicon sequencing. Front Microbiol 8:159. https://doi.org/10.3389/fmicb.2017.00159
Wang J, Feng W, Zhang S, Chen L, Tang F, Sheng YC, Ao H, Peng C (2019a) Ameliorative effect of Atractylodes macrocephala essential oil combined with Panax ginseng total saponins on 5-fluorouracil induced diarrhea is associated with gut microbial modulation. J Ethnopharmacol 238:111887. https://doi.org/10.1016/j.jep.2019.111887
Wang J, Feng W, Zhang S, Chen L, Tang F, Sheng YC, Ao H, Peng C (2019b) Gut microbial modulation in the treatment of chemotherapy-induced diarrhea with Shenzhu capsule. BMC Complement Altern Med 19:126. https://doi.org/10.1186/s12906-019-2548-y
Wei X, Tao J, Xiao S, Jiang S, Shang E, Zhu Z, Qian D, Duan J (2018a) Xiexin Tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota. Sci Rep 8:3685. https://doi.org/10.1038/s41598-018-22094-2
Wei X, Tao J, Shen Y, Xiao S, Jiang S, Shang E, Zhu Z, Qian D, Duan J (2018b) Sanhuang Xiexin Tang ameliorates type 2 diabetic rats via modulation of the metabolic profiles and NF-κB/PI-3K/Akt signaling pathways. Front Pharmacol 9:955. https://doi.org/10.3389/fphar.2018.00955
Wu M, Wu Y, Deng B, Li JS, Cao HY, Qu Y, Qian XL, Zhong GS (2016) Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget 7:85318–85331. https://doi.org/10.18632/oncotarget.13347
Xu J, Chen N, Wu Z, Song Y, Zhang Y, Wu N, Zhang F, Ren X, Liu Y (2018) 5-Aminosalicylic acid alters the gut bacterial microbiota in patients with ulcerative colitis. Front Microbiol 9:1274. https://doi.org/10.3389/fmicb.2018.01274
Yilmaz B, Juillerat P, Øyås O, Ramon C, Bravo FD, Franc Y, Fournier N, Michetti P, Mueller C, Geuking M, Pittet VEH, Maillard MH, Rogler G, Wiest R, Stelling J, Macpherson AJ (2019) Microbial network disturbances in relapsing refractory Crohn’s disease. Nat Med 25:323–336. https://doi.org/10.1038/s41591-018-0308-z
Yuza K, Nagahashi M, Shimada Y, Nakano M, Tajima Y, Kameyama H, Nakajima M, Takabe K, Wakai T (2018) Upregulation of phosphorylated sphingosine kinase 1 expression in colitis-associated cancer. J Surg Res 231:323–330. https://doi.org/10.1016/j.jss.2018.05.085
Zhang C, Jiang M, Lu A (2013) Considerations of traditional Chinese medicine as adjunct therapy in the management of ulcerative colitis. Clin Rev Allergy Immunol 44:274–283. https://doi.org/10.1007/s12016-012-8328-9
Zhang M, Sun K, Wu Y, Yang Y, Tso P, Wu Z (2017) Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front Immunol 8:942. https://doi.org/10.3389/fimmu.2017.00942
Zhang F, Li Y, Wang X, Wang S, Bi D (2019) The impact of Lactobacillus plantarum on the gut microbiota of mice with DSS-induced colitis. Biomed Res Int 2019:3921315–3921310. https://doi.org/10.1155/2019/3921315
Zhao S, Gong Z, Du X (2018) Deoxycholic acid-mediated sphingosine-1-phosphate receptor 2 signaling exacerbates DSS-induced colitis through promoting cathepsin B release. J Immunol Res 2018:2481418–2481419. https://doi.org/10.1155/2018/2481418
Zhou Y, Shan G, Sodergren E, Weinstock G, Walker WA, Gregory KE (2015) Longitudinal analysis of the premature infant intestinal microbiome prior to necrotizing enterocolitis: a case-control study. PLoS One 10:e0118632. https://doi.org/10.1371/journal.pone.0118632
Zhu B, Cao H, Sun L, Li B, Guo LW, Duan JA, Zhu HX, Zhang QC (2018) Metabolomics-based mechanisms exploration of Huang-Lian Jie-Du decoction on cerebral ischemia via UPLC-Q-TOF/MS analysis on rat serum. J Ethnopharmacol 216:147–156. https://doi.org/10.1016/j.jep.2018.01.015
Funding
This work was financially supported by Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization (No.ZDXM-1-10).
Author information
Authors and Affiliations
Contributions
J.F.Z. designed the study, performed experiments, analyzed the data, and wrote the manuscript. Y.M.S., M.J.C, Z.M.Z, S.W.X, C.L, Y.W, L.Y., and E.X.S. helped with performed experiments and analyzed data. S.J. helped with design and review of the manuscript. D.W.Q. and J.A.D. contributed analytical tools. All authors read and approved the manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(PDF 901 kb)
Rights and permissions
About this article
Cite this article
Zou, J., Shen, Y., Chen, M. et al. Lizhong decoction ameliorates ulcerative colitis in mice via modulating gut microbiota and its metabolites. Appl Microbiol Biotechnol 104, 5999–6012 (2020). https://doi.org/10.1007/s00253-020-10665-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-020-10665-1