Skip to main content

Biochemical characterization of a novel α-L-fucosidase from Pedobacter sp. and its application in synthesis of 3′-fucosyllactose and 2′-fucosyllactose

Abstract

Fucosyllactoses have gained much attention owing to their multiple functions, including prebiotic, immune, gut, and cognition benefits. In this study, human milk oligosaccharide (HMO) 2′-fucosyllactose (α-L-Fuc-(1,2)-D-Galβ-1,4-Glu, 2′FL) and its isomer 3′-fucosyllactose (α-L-Fuc-(1,3)-D-Galβ-1,4-Glu, 3′FL) with potential prebiotic effect were synthesized efficiently by a novel recombinant α-L-fucosidase. An α-L-fucosidase gene (PbFuc) from Pedobacter sp. CAU209 was successfully cloned and expressed in Escherichia coli (E. coli). The deduced amino acid sequence shared the highest identity of 36.8% with the amino sequences of other reported α-L-fucosidases. The purified α-L-fucosidase (PbFuc) had a molecular mass of 50 kDa. The enzyme exhibited specific activity (26.3 U/mg) towards 4-nitrophenyl-α-L-fucopyranoside (pNP-FUC), 3′FL (8.9 U/mg), and 2′FL (3.4 U/mg). It showed the highest activity at pH 5.0 and 35 °C, respectively. PbFuc catalyzed the synthesis of 3′FL and 2′FL through a transglycosylation reaction using pNP-FUC as donor and lactose as acceptor, and total conversion ratio was up to 85% at the optimized reaction conditions. The synthesized mixture of 2′FL and 3′FL promoted the growth of Lactobacillus delbrueckii subsp. bulgaricus NRRL B-548, L. casei subsp. casei NRRL B-1922, L. casei subsp. casei AS 1.2435, and Bifidobacterium longum NRRL B-41409. However, the growths of E. coli ATCC 11775, S. enterica AS 1.1552, L. monocytogenes CICC 21635, and S. aureus AS 1.1861 were not stimulated by the mixture of 2′FL and 3′FL. Overall, our findings suggest that PbFuc possesses a great potential for the specific synthesis of fucosylated compounds.

Key Points
• A novel α-L-fucosidase (PbFuc) from Pedobacter sp. was cloned and expressed.
• PbFuc showed the highest hydrolysis activity at pH 5.0 and 35 °C, respectively.
• It was used for synthesis of 3′-fucosyllactose (3FL) and 2′-fucosyllactose (2FL).
• The mixture of 3FL and 2FL promoted the growth of some Lactobacillus sp. and Bifidobacteria sp.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603. https://doi.org/10.1093/nar/gks400

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, Kumagai H, Ashida H, Hirose J, Kitaoka M (2011) Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 286:34583–34592. https://doi.org/10.1074/jbc.M111.248138

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, Katayama T, Yamamoto K (2009) Two distinct α-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 19:1010–1017. https://doi.org/10.1093/glycob/cwp082

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Benešová E, Lipovová P, Dvořáková H, Králová B (2013) α-L-Fucosidase from Paenibacillus thiaminolyticus: its hydrolytic and transglycosylation abilities. Glycobiology 23:1052–1065. https://doi.org/10.1093/glycob/cwt041

    CAS  Article  PubMed  Google Scholar 

  5. Benešová E, Lipovová P, Krejzová J, Kovaľová T, Buchtová P, Spiwok V, Králová B (2015) Alpha-L-fucosidase isoenzyme iso2 from Paenibacillus thiaminolyticus. BMC Biotechnol 15:36. https://doi.org/10.1186/s12896-015-0160-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bojarová P, Kren V (2011) Glycosidases in carbohydrate synthesis: when organic chemistry falls short. Chimia (Aarau) 65:65–70

    Article  Google Scholar 

  7. Bych K, Miks MH, Markus TJ, Hederos J, Vigsnæs LK, Becker P (2019) Production of HMOs using microbial hosts—from cell engineering to large scale production. Curr Opin Biotechnol 56C:130–137. https://doi.org/10.1016/j.copbio.2018.11.003

    CAS  Article  Google Scholar 

  8. Cao HN, Walton JD, Brumm P, Phillips GN (2014) Structure and substrate specificity of a eukaryotic fucosidase from Fusarium graminearum. J Biol Chem 289:25624–25638. https://doi.org/10.1074/jbc.M114.583286

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, Chen J, Chow B, Chui C, Crowley C, Currell B, Deuel B, Dowd P, Eaton D, Foster J, Grimaldi C, Gu Q, Hass PE, Heldens S, Huang A, Kim HS, Klimowski L, Jin Y, Johnson S, Lee J, Lewis L, Liao D, Mark M, Robbie E, Sanchez C, Schoenfeld J, Seshagiri S, Simmons L, Singh J, Smith V, Stinson J, Vagts A, Vandlen R, Watanabe C, Wieand D, Woods K, Xie MH, Yansura D, Yi S, Yu G, Yuan J, Zhang M, Zhang Z, Goddard A, Wood WI, Godowski P, Gray A (2003) The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res 13(10):2265–70. https://doi.org/10.1101/gr.1293003

  10. Dupoiron S, Zischek C, Ligat L, Carbonne J, Boulanger A, Dugé de Bernonville T, Lautier M, Rival P, Arlat M, Jamet E, Lauber E, Albenne C (2015) The N-Glycan cluster from Xanthomonas campestris pv. Campestris. J Biol Chem 290(10):6022-36. https://doi.org/10.1074/jbc.M114.624593

  11. Eneyskaya EV, Kulminskaya AA, Kalkkinen N, Nifantiev NE, Arbatskii NP, Saenko A, Chepurnaya OV, Arutyunyan AV, Shabalin KA, Neustroev KN (2001) An α-L-fucosidase from Thermus sp. with unusually broad specificity. Glycoconj J 18:827–834

    CAS  Article  Google Scholar 

  12. Escamilla-Lozano Y, Guzmán-Rodríguez F, Alatorre-Santamaría S, García-Garibay M, Gómez-Ruiz L, Rodríguez-Serrano G, Cruz-Guerrero A (2019) Synthesis of fucosyl-oligosaccharides using α-l-fucosidase from Lactobacillus rhamnosus GG. Molecules 24(13):2402. https://doi.org/10.3390/molecules24132402

    CAS  Article  PubMed Central  Google Scholar 

  13. Fisher KJ, Aronson NN Jr (1989) Isolation and sequence analysis of a cDNA encoding rat liver alpha-L-fucosidase. Biochem J 264(3):695-701. https://doi.org/10.1042/bj2640695

  14. Guzmán-Rodríguez F, Alatorre-Santamaría S, Gómez-Ruiz L, Rodríguez-Serrano G, García-Garibay M, Cruz-Guerrero A (2018) Synthesis of a fucosylated trisaccharide via transglycosylation by α-L-fucosidase from Thermotoga maritima. Appl Biochem Biotechnol 186:681–691. https://doi.org/10.1007/s12010-018-2771-x

    CAS  Article  PubMed  Google Scholar 

  15. Guzmán-Rodríguez F, Alatorre-Santamaría S, Gómez-Ruiz L, Rodríguez-Serrano G, García-Garibay M, Cruz-Guerrero A (2019) Employment of fucosidases for the synthesis of fucosylated oligosaccharides with biological potential. Biotechnol Appl Biochem 66:172–191. https://doi.org/10.1002/bab.1714

    CAS  Article  Google Scholar 

  16. Hayes MR, Pietruszka J (2017) Synthesis of glycosides by glycosynthases. Molecules 22:1434. https://doi.org/10.3390/molecules22091434

    CAS  Article  PubMed Central  Google Scholar 

  17. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316. https://doi.org/10.1042/bj2800309

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Hoeflinger JL, Davis SR, Chow J, Miller MJ (2015) In vitro impact of human milk oligosaccharides on Enterobacteriaceae growth. J Agric Food Chem 63:3295–3302. https://doi.org/10.1021/jf505721p

    CAS  Article  PubMed  Google Scholar 

  19. Lammerts van Bueren A, Ardèvol A, Fayers-Kerr J, Luo B, Zhang Y, Sollogoub M, Blériot Y, Rovira C, Davies GJ (2010) Matthieu sollogoub analysis of the reaction coordinate of α-L-Fucosidases: a combined structural and quantum mechanical approach. J Am Chem Soc 132:1804–1806. https://doi.org/10.1021/ja908908q

    CAS  Article  PubMed  Google Scholar 

  20. Lezyk M, Jers C, Kjaerulff L, Gotfredsen CH, Mikkelsen MD, Mikkelsen JD (2016) Novel α-L-fucosidases from a soil metagenome for production of fucosylated human milk oligosaccharides. PLoS One 11:1–18. https://doi.org/10.1371/journal.pone.0147438

    CAS  Article  Google Scholar 

  21. Liu S, Kulinich A, Cai Z, Ma HY, Du YM, Lv YM, Liu L, Voglmeir J (2016) The fucosidase-pool of Emticicia oligotrophica: biochemical characterization and transfucosylation potential. Glycobiology 26:871–879. https://doi.org/10.1093/glycob/cww030

    CAS  Article  PubMed  Google Scholar 

  22. LoCascio RG, Ninonuevo MR, Freeman SL, Sela DA, Grimm R, Lebrilla CB, Mills DA, German JB (2007) Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J Agric Food Chem 55:8914–8919. https://doi.org/10.1021/jf0710480

    CAS  Article  PubMed  Google Scholar 

  23. Lombard V, Golaconda RH, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. https://doi.org/10.1093/nar/gkt1178

    CAS  Article  PubMed  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Matthies H, Staak S, Krug M (1996) Fucose and fucosyllactose enhance in-vitro hippocampal long-term potentiation. Brain Res 725:276–280. https://doi.org/10.1016/0006-8993(96)00406-4

    CAS  Article  PubMed  Google Scholar 

  26. Miyauchi T, Yonezawa S, Takamura T, Chiba T, Tejima S, Ozawa M, Sato E, Muramatsu T (1982) A new fucosyl antigen expressed on colon adenocarcinoma and embryonal carcinoma cells. Nature 299:168–169. https://doi.org/10.1038/299168a0

    CAS  Article  PubMed  Google Scholar 

  27. Murata T, Morimoto S, Zeng X, Watanabe S, Usui T (1999) Enzymatic synthesis of alpha-L-fucosyl-N-acetyllac-tosamines and 3′-O-alpha-L-fucosyllactose utilizing alpha-L-fucosidases. Carbohydr Res 320:192–199. https://doi.org/10.1016/s0008-6215(99)00156-1

    CAS  Article  PubMed  Google Scholar 

  28. Ohira M, Morohashi A, Nakamura Y, Isogai E, Furuya K, Hamano S, Machida T, Aoyama M, Fukumura M, Miyazaki K, Suzuki Y, Sugano S, Hirato J, Nakagawara A (2003) Neuroblastoma oligo-capping cDNA project: toward the understanding of the genesis and biology of neuroblastoma. Cancer Lett. 197(1-2):63-8. https://doi.org/10.1016/s0304-3835(03)00085-5

  29. Paper JM, Scott-Craig JS, Cavalier D, Faik A, Wiemels RE, Borrusch MS, Bongers M, Walton JD (2013) α-Fucosidases with different substrate specificities from two species of Fusarium. Appl. Microbiol. Biotechnol 97:5371–5380. https://doi.org/10.1007/s00253-012-4423-3

    CAS  Article  Google Scholar 

  30. Petersen TN, Brunak S, Von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. https://doi.org/10.1038/nmeth.1701

    CAS  Article  PubMed  Google Scholar 

  31. Renard CM, Lomax JA, Boon JJ (1992) Apple-fruit xyloglucans: a comparative study of enzyme digests of whole cell walls and of alkali-extracted xyloglucans. Carbohydr Res 232:303–320. https://doi.org/10.1016/0008-6215(92)80062-6

    CAS  Article  PubMed  Google Scholar 

  32. Rodríguez-Díaz J, Monedero V, Yebra MJ (2011) Utilization of natural fucosylated oligosaccharides by three novel α-L-fucosidases from a probiotic Lactobacillus casei strain. Appl Environ Microbiol 77:703–705. https://doi.org/10.1128/AEM.01906-10

    CAS  Article  PubMed  Google Scholar 

  33. Sakurama H, Tsutsumi E, Ashida H, Katayama T, Yamamoto K, Kumagai H (2012) Differences in the substrate specificities and active-site structures of two α-L-fucosidases (glycoside hydrolase family 29) from Bacteroides thetaiotaomicron. Biosci Biotechnol Biochem 76:1022–1024. https://doi.org/10.1271/bbb.111004

    CAS  Article  PubMed  Google Scholar 

  34. Saumonneau A, Champion E, Peltier-Pain P, Molnar-Gabor D, Hendrickx J, Tran V, Hederos M, Dekany G, Tellier C (2016) Design of an α-L-transfucosidase for the synthesis of fucosylated HMOs. Glycobiology 26:261–269. https://doi.org/10.1093/glycob/cwv099

    CAS  Article  PubMed  Google Scholar 

  35. Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom HJ, Joachimiak A, Lebrilla CB, Mills DA (2012) Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol 78:795–803. https://doi.org/10.1128/AEM.06762-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Shaikh FA, Lammerts van Bueren A, Davies GJ, Withers SG (2013) Identifying the catalytic acid/base in GH29 α-L-fucosidase subfamilies. Biochemistry 52:5857–5864. https://doi.org/10.1021/bi400183q

    CAS  Article  PubMed  Google Scholar 

  37. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus Li KW, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2014) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539–539. https://doi.org/10.1038/msb.2011.75

    Article  Google Scholar 

  38. Sugiyama Y, Gotoh A, Katoh T, Honda Y, Yoshida E, Kurihara S, Ashida H, Kumagai H, Yamamoto K, Kitaoka M, Katayama T (2016) Introduction of H-antigens into oligosaccharides and sugar chains of glycoproteins using highly efficient 1,2-α-L-fucosynthase. Glycobiology 26:1235–1247. https://doi.org/10.1093/glycob/cww085

    CAS  Article  Google Scholar 

  39. Sulzenbacher G, Bignon C, Nishimura T, Tarling CA, Withers SG, Henrissat B, Bourne Y (2004) Crystal structure of Thermotoga maritima α-L-fucosidase insights into the catalytic mechanism and the molecular basis for fucosidases. J Biol Chem 279:13119–13128. https://doi.org/10.1074/jbc.M313783200

    CAS  Article  Google Scholar 

  40. Takamura T, Chiba T, Tejima S (1981) Chemical modification of lactose. XV. Syntheses of O-α-and O-β-L-Fucopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1→4)-D-glucopyranoses (3′-O-α-and 3′-O-β-L-Fucopyranosyllactoses). Carbohydr Res 84:53–60. https://doi.org/10.1002/chin.198139330

    Article  Google Scholar 

  41. Vandenplas Y, Berger B, Carnielli VP, Ksiazyk J, Lagström H, Luna MS, Migacheva N, Mosselmans JM, Picaud JC, Possner M, Singhal A, Wabitsch M (2018) Human milk oligosaccharides: 2’-fucosyllactose (2’FL) and lacto-N-Neotetraose (LNnT) in infant formula. Nutrients 10:1–12. https://doi.org/10.3390/nu10091161

    CAS  Article  Google Scholar 

  42. Vázquez E, Barranco A, Ramírez M, Gruart A, Delgado-García JM, Martínez-Lara E, Blanco S, Martín MJ, Castanys E, Buck R, Prieto P, Rueda R (2015) Effects of a human milk oligosaccharide, 2′-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. J Nutr Biochem 26:455–465. https://doi.org/10.1016/j.jnutbio.2014.11.016

    CAS  Article  PubMed  Google Scholar 

  43. Xiao L, LeusinkMuis T, Kettelarij N, vanArk I, Blijenberg B, Hesen NA, Stahl B, Overbeek SA, Garssen J, Folkerts G, Van't Land B (2018) Human milk oligosaccharide 2′-fucosyllactose improves innate and adaptive immunity in an influenza-specific murine vaccination model. Front Immunol 9:452. https://doi.org/10.3389/fimmu.2018.00452

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Yamashita K, Tachibana Y, Kobata A (1976) Oligosaccharides of human milk. Isolation and characterization of three new disialylfucosyl hexasaccharides. Arch Biochem Biophys 174:582–591. https://doi.org/10.1016/0003-9861(76)90387-8

    CAS  Article  PubMed  Google Scholar 

  45. Yu ZT, Chen C, Kling DE, Liu B, McCoy JM, Merighi M, Heidtman M, Newburg DS (2013) The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology 23:169–177. https://doi.org/10.1093/glycob/cws138

    CAS  Article  PubMed  Google Scholar 

  46. Yu ZT, Nanthakumar NN, Newburg DS (2016) The human milk oligosaccharide 2′-fucosyllactose quenches Campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa. J Nutr 146:1980–1990. https://doi.org/10.3945/jn.116.230706

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Yun EJ, Liu JJ, Lee JW, Kwak S, Yu S, Kim KH, Jin YS (2019) Biosynthetic routes for producing various fucosyl-oligosaccharides. ACS Synth Biol 8:415–424. https://doi.org/10.1021/acssynbio.8b00436

    CAS  Article  PubMed  Google Scholar 

  48. Zehra S, Khambati I, Megan V, Mian MF, Buck R, Paul F (2018) Human milk oligosaccharides attenuate antigen-antibody complex induced chemokine release from human intestinal epithelial cell lines. J Food Sci 83:499–508. https://doi.org/10.1111/1750-3841.14039

    CAS  Article  PubMed  Google Scholar 

  49. Zeuner B, Jers C, Mikkelsen JD, Meyer AS (2014) Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. J Agric Food Chem 62:9615–9631. https://doi.org/10.1021/jf502619p

    CAS  Article  PubMed  Google Scholar 

  50. Zeuner B, Muschiol J, Holck J, Lezyk M, Gedde MR, Jers C, Mikkelsen JD, Meyer AS (2018) Substrate specificity and transfucosylation activity of GH 29 α-L-fucosidases for enzymatic production of human milk oligosaccharides. New Biotechnol 41:34–45. https://doi.org/10.1016/j.nbt.2017.12.002

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, grant numbers 31630096 and 31822037.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhengqiang Jiang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 788 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Ma, J., Yan, Q. et al. Biochemical characterization of a novel α-L-fucosidase from Pedobacter sp. and its application in synthesis of 3′-fucosyllactose and 2′-fucosyllactose. Appl Microbiol Biotechnol 104, 5813–5826 (2020). https://doi.org/10.1007/s00253-020-10630-y

Download citation

Keywords

  • α-L-fucosidase
  • Transglycosylation
  • Pedobacter sp.
  • 2′-fucosyllactose
  • 3′-fucosyllactose