Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus

Abstract

The latest WHO report estimates about 1.6 million global deaths annually from TB, which is further exacerbated by drug-resistant (DR) TB and comorbidities with diabetes and HIV. Exiguous dosing, incomplete treatment course, and the ability of the tuberculosis bacilli to tolerate and survive current first-line and second-line anti-TB drugs, in either their latent state or active state, has resulted in an increased prevalence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant TB (TDR-TB). Although a better understanding of the TB microanatomy, genome, transcriptome, proteome, and metabolome, has resulted in the discovery of a few novel promising anti-TB drug targets and diagnostic biomarkers of late, no new anti-TB drug candidates have been approved for routine therapy in over 50 years, with only bedaquiline, delamanid, and pretomanid recently receiving tentative regulatory approval. Considering this, alternative approaches for identifying possible new anti-TB drug candidates, for effectively eradicating both replicating and non-replicating Mycobacterium tuberculosis, are still urgently required. Subsequently, several antibiotic and non-antibiotic drugs with known treatment indications (TB targeted and non-TB targeted) are now being repurposed and/or derivatized as novel antibiotics for possible use in TB therapy. Insights gathered here reveal that more studies focused on drug-drug interactions between licensed and potential lead anti-TB drug candidates need to be prioritized. This write-up encapsulates the most recent findings regarding investigational compounds with promising anti-TB potential and drugs with repurposing potential in TB therapy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdizadeh T, Kalani MR, Abnous K, Tayarani-Najaran Z, Khashyarmanesh BZ, Abdizadeh R, Ghodsi R, Hadizadeh F (2017) Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur J Med Chem 132:42–62

    CAS  PubMed  Google Scholar 

  2. Aguilar-Ayala DA, Cnockaert M, Vandamme P, Palomino JC, Martin A, Gonzalez-Y-Merchand J (2018) Antimicrobial activity against Mycobacterium tuberculosis under in vitro lipid-rich dormancy conditions. J Med Microbiol 67:282–285

    CAS  PubMed  Google Scholar 

  3. Agyeman AA, Ofori-Asenso R (2016) Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 15:41

    PubMed  PubMed Central  Google Scholar 

  4. Aljayyoussi G, Jenkins VA, Sharma R, Ardrey A, Donnellan S, Ward SA, Biagini GA (2017) Pharmacokinetic-pharmacodynamic modelling of intracellular Mycobacterium tuberculosis growth and kill rates is predictive of clinical treatment duration. Sci Rep 7:1–11

    Google Scholar 

  5. Alliance T- FDA approves new treatment for highly drug-resistant forms of tuberculosis. https://www.tballiance.org/news/fda-approves-new-treatment-highly-drug-resistant-forms-tuberculosis - Accessed - January, 2020

  6. Alsaad N, Dijkstra JA, Akkerman OW, de Lange WCM, van Soolingen D, Kosterink JGW, van der Werf TS, Alffenaar JWC (2016) Pharmacokinetic evaluation of sulfamethoxazole at 800 milligrams once daily in the treatment of tuberculosis. Antimicrob Agents Chemother 60:3942–3947

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ammerman NC, Swanson RV, Bautista EM, Almeida DV, Saini V, Omansen TF, Guo H, Chang YS, Li S-Y, Tapley A, Tasneen R, Tyagi S, Betoudji F, Moodley C, Ngcobo B, Pillay L, Bester LA, Singh SD, Chaisson RE, Nuermberger E, Grosset JH (2018) Impact of clofazimine dosing on treatment shortening of the first-line regimen in a mouse model of tuberculosis. Antimicrob Agents Chemother 62:e00636–e00618

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Andries K, Verhasselt P, Guillemont J, Göhlmann HWH, Neefs J-M, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V (2005) A diarylquinoline drug active on the ATP Synthase of Mycobacterium tuberculosis. Sci 307:223–227

    CAS  Google Scholar 

  9. Antonova AV, Gryadunov DA, Zimenkov DV (2018) Molecular mechanisms of drug tolerance in mycobacterium tuberculosis. Mol Biol 52:372–384

    CAS  Google Scholar 

  10. Arab HH, Salama SA, Omar HA, Arafa E-SA, Maghrabi IA (2015) Diosmin protects against ethanol-induced gastric injury in rats: Novel anti-ulcer actions. PLoS One 10:e0122417

    PubMed  PubMed Central  Google Scholar 

  11. Arnold A, Cooke GS, Kon OM, Dedicoat M, Lipman M, Loyse A, Chis Ster I, Harrison TS (2017) Adverse effects and choice between the injectable agents amikacin and capreomycin in multidrug-resistant tuberculosis. Antimicrob Agents Chemother 61:e02586–e02516

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bansal Y, Sethi P, Bansal G (2013) Coumarin: a potential nucleus for anti-inflammatory molecules. Med Chem Res 22:3049–3060

    CAS  Google Scholar 

  13. Basanagouda M, Jambagi VB, Barigidad NN, Laxmeshwar SS, Devaru V (2014) Synthesis, structure–activity relationship of iodinated-4-aryloxymethyl-coumarins as potential anti-cancer and anti-mycobacterial agents. Eur J Med Chem 74:225–233

    CAS  PubMed  Google Scholar 

  14. Bax HI, de Steenwinkel JE, ten Kate MT, van der Meijden A, Verbon A, Bakker-Woudenberg IA (2015) Colistin as a potentiator of anti-TB drug activity against Mycobacterium tuberculosis. J Antimicrob Chemother 70:2828–2837

    CAS  PubMed  Google Scholar 

  15. Begum S, Naqvi SQZ, Ahmed A, Tauseef S, Siddiqui BS (2012) Antimycobacterial and antioxidant activities of reserpine and its derivatives. Nat Prod Res 26:2084–2088

    CAS  PubMed  Google Scholar 

  16. Beteck RM, Seldon R, Coertzen D, van der Watt ME, Reader J, Mackenzie JS, Lamprecht DA, Abraham M, Eribez K, Müller J, Rui F, Zhu G, de Grano RV, Williams ID, Smit FJ, Steyn AJC, Winzeler EA, Hemphill A, Birkholtz L-M, Warner DF, N’Da DD, Haynes RK (2018) Accessible and distinct decoquinate derivatives active against Mycobacterium tuberculosis and apicomplexan parasites. Comm Chem 1:62

    Google Scholar 

  17. Bhat ZS, Lah HU, Rather MA, Maqbool M, Ara T, Ahmad Z, Yousuf SK (2018) Synthesis and in vitro evaluation of substituted 3-cinnamoyl-4-hydroxy-pyran-2-one (CHP) in pursuit of new potential antituberculosis agents. MedChemComm 9:165–172

    CAS  PubMed  Google Scholar 

  18. Bolhuis MS, van Altena R, van Soolingen D, de Lange WCM, Uges DRA, van der Werf TS, Kosterink JGW, Alffenaar J-WC (2013) Clarithromycin increases linezolid exposure in multidrug-resistant tuberculosis patients. Eur Respir J 42:1614–1621

    CAS  PubMed  Google Scholar 

  19. Bonds AC, Sampson NS (2018) More than cholesterol catabolism: Regulatory vulnerabilities in Mycobacterium tuberculosis. Curr Opin Chem Biol 44:39–46

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bruhn DF, Scherman MS, Liu J, Scherbakov D, Meibohm B, Böttger EC, Lenaerts AJ, Lee RE (2015) In vitro and in vivo evaluation of synergism between anti-tubercular spectinamides and non-classical tuberculosis antibiotics. Sci Rep 5:13985

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Budha NR, Mehrotra N, Tangallapally R, Qi J, Daniels AJ, Lee RE, Meibohm B (2008) Pharmacokinetically-guided lead optimization of nitrofuranylamide anti-tuberculosis agents. The AAPS J 10:157–165

    CAS  PubMed  Google Scholar 

  22. Cambier CJ, Falkow S, Ramakrishnan L (2014) Host evasion and exploitation schemes of mycobacterium tuberculosis. Cell 159:1497–1509

    CAS  PubMed  Google Scholar 

  23. Campanico A, Moreira R, Lopes F (2018) Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur J Med Chem 150:525–545

    CAS  PubMed  Google Scholar 

  24. Caraffa E, Russo G, Vita S, Lichtner M, Massetti AP, Mastroianni CM, Vullo V, Ciardi MR, Ajassa C (2018) Intracranial tuberculous mass lesions treated with thalidomide in an immunocompetent child from a low tuberculosis endemic country: A case report. Med 97:e11186

    Google Scholar 

  25. Castelo-Branco FS, de Lima EC, de Oliveira Domingos JL, Pinto AC, Lourenço MCS, Gomes KM, Costa-Lima MM, Araujo-Lima CF, Aiub CAF, Felzenszwalb I (2018) New hydrazides derivatives of isoniazid against Mycobacterium tuberculosis: Higher potency and lower hepatocytotoxicity. Eur J Med Chem 146:529–540

    CAS  PubMed  Google Scholar 

  26. Chen C, Gardete S, Jansen RS, Shetty A, Dick T, Rhee KY, Dartois V (2018) Verapamil targets membrane energetics in Mycobacterium tuberculosis. Antimicrob Agents Chemother 62:e02107–e02117

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chetty S, Ramesh M, Singh-Pillay A, Soliman MES (2017) Recent advancements in the development of anti-tuberculosis drugs. Bioorg Med Chem Lett 27:370–386

    CAS  PubMed  Google Scholar 

  28. Chiarelli LR, Mori M, Barlocco D, Beretta G, Gelain A, Pini E, Porcino M, Mori G, Stelitano G, Costantino L (2018) Discovery and development of novel salicylate synthase (MbtI) Furanic inhibitors as antitubercular agents. Eur J Med Chem 155:754–763

    CAS  PubMed  Google Scholar 

  29. Chien J-Y, Yu C-J, Hsueh P-R (2017) High incidence of fluoroquinolone resistance and effect of efflux pump inhibitors on moxifloxacin resistance among Mycobacterium tuberculosis isolates causing urinary tract infection in Taiwan. Int J Antimicrob Agents 50:491–495

    CAS  PubMed  Google Scholar 

  30. Cleghorn LAT, Ray PC, Odingo J, Kumar A, Wescott H, Korkegian A, Masquelin T, Lopez Moure A, Wilson C, Davis S, Huggett M, Turner P, Smith A, Epemolu O, Zuccotto F, Riley J, Scullion P, Shishikura Y, Ferguson L, Rullas J, Guijarro L, Read KD, Green SR, Hipskind P, Parish T, Wyatt PG (2018) Identification of morpholino thiophenes as novel Mycobacterium tuberculosis inhibitors, targeting QcrB. J Med Chem 61:6592–6608

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Coelho TS, Silva RSF, Pinto AV, Pinto MCFR, Scaini CJ, Moura KCG, Almeida da Silva P (2010) Activity of β-lapachone derivatives against rifampicin-susceptible and -resistant strains of Mycobacterium tuberculosis. Tuberculosis 90:293–297

    CAS  PubMed  Google Scholar 

  32. Creswell J, Raviglione M, Ottmani S, Migliori GB, Uplekar M, Blanc L, Sotgiu G, Lönnroth K (2011) Tuberculosis and noncommunicable diseases: neglected links and missed opportunities. Eur Respir J 37:1269–1282

    CAS  PubMed  Google Scholar 

  33. da Silva MN, Ferreira VF, De Souza M (2003) An overview of the chemistry and pharmacology of naphtoquinones with emphasis on β-Lapachone and derivatives. Quim Nova 26:407–416

    Google Scholar 

  34. DB00206 Reserpine - DrugBank. https://www.drugbankca/drugs/DB00206. Accessed Jan 2020

  35. DB00661 Verapamil - DrugBank. https://www.drugbankca/drugs/DB00661. Accessed Jan 2020

  36. DB01166 Cilostazol - DrugBank. https://wwwdrugbankca/drugs/DB01166. Accessed Jan 2020

  37. DB01628 Etoricoxib - DrugBank. https://www.drugbankca/drugs/DB01628. Accessed Jan 2020

  38. de Carvalho LPS, Darby CM, Rhee KY, Nathan C (2011) Nitazoxanide disrupts membrane potential and intrabacterial pH homeostasis of Mycobacterium tuberculosis. ACS Med Chem Lett 2:849–854

    PubMed  PubMed Central  Google Scholar 

  39. de Carvalho LPS, Lin G, Jiang X, Nathan C (2009) Nitazoxanide kills replicating and nonreplicating Mycobacterium tuberculosis and evades resistance. J Med Chem 52:5789–5792

    PubMed  Google Scholar 

  40. Deng J-L, Liu X-C, Cai G-W, Zhang G, Hu L, Qiu L, Li Z-Y, Xu Z (2018) Heteronuclear 5-Fluoroisatin Dimers: design, synthesis, and evaluation of their in vitro anti-mycobacterial activities. J Heterocyclic Chem 55:1509–1513

    CAS  Google Scholar 

  41. Deshpande D, Srivastava S, Bendet P, Martin KR, Cirrincione KN, Lee PS, Pasipanodya JG, Dheda K, Gumbo T (2018a) Antibacterial and sterilizing effect of benzylpenicillin in tuberculosis. Antimicrob Agents Chemother 62:e02232–e02217

    PubMed  PubMed Central  Google Scholar 

  42. Deshpande D, Srivastava S, Chapagain M, Magombedze G, Martin KR, Cirrincione KN, Lee PS, Koeuth T, Dheda K, Gumbo T (2017) Ceftazidime-avibactam has potent sterilizing activity against highly drug-resistant tuberculosis. Sci Adv 3:e1701102

    PubMed  PubMed Central  Google Scholar 

  43. Deshpande D, Srivastava S, Nuermberger E, Koeuth T, Martin KR, Cirrincione KN, Lee PS, Gumbo T (2018b) Multiparameter responses to tedizolid monotherapy and moxifloxacin combination therapy models of children with intracellular tuberculosis. Clin Infect Dis 67:S342–S348

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dhar N, Dubée V, Ballell L, Cuinet G, Hugonnet J-E, Signorino-Gelo F, Barros D, Arthur M, McKinney JD (2015) Rapid cytolysis of Mycobacterium tuberculosis by Faropenem, an orally bioavailable β-lactam antibiotic. Antimicrob Agents Chemother 59:1308–1319

    PubMed  PubMed Central  Google Scholar 

  45. Diacon AH, van der Merwe L, Barnard M, von Groote-Bidlingmaier F, Lange C, García-Basteiro AL, Sevene E, Ballell L, Barros-Aguirre D (2016) β-Lactams against Tuberculosis — New trick for an old Dog? N Engl J Med 375:393–394

    PubMed  Google Scholar 

  46. Djaout K, Singh V, Boum Y, Katawera V, Becker HF, Bush NG, Hearnshaw SJ, Pritchard JE, Bourbon P, Madrid PB, Maxwell A, Mizrahi V, Myllykallio H, Ekins S (2016) Predictive modeling targets thymidylate synthase ThyX in Mycobacterium tuberculosis. Sci Rep 6:27792

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dong M, Pfeiffer B, Altmann K-H (2017) Recent developments in natural product-based drug discovery for tuberculosis. Drug Discov Today 22:585–591

    CAS  PubMed  Google Scholar 

  48. Duan H, Chen X, Li Z, Pang Y, Jing W, Liu P, Wu T, Cai C, Shi J, Qin Z, Yin H, Qiu C, Li C, Xia Y, Chen W, Ye Z, Li Z, Chen G, Wang S, Liu Y, Chu L, Zhu M, Xu T, Wang Q, Wang J, Du Y, Wang J, Chu N, Xu S (2019) Clofazimine improves clinical outcomes in multidrug-resistant tuberculosis: a randomized controlled trial. Clin Microbiol Infect 25:190–195

    CAS  PubMed  Google Scholar 

  49. Duarte R, Lönnroth K, Carvalho C, Lima F, Carvalho ACC, Muñoz-Torrico M, Centis R (2018) Tuberculosis, social determinants and co-morbidities (including HIV). Pulmonol 24:115–119

    CAS  Google Scholar 

  50. Dung TD, Day CH, Binh TV, Lin C-H, Hsu H-H, Su C-C, Lin Y-M, Tsai F-J, Kuo W-W, Chen L-M, Huang C-Y (2012) PP2A mediates diosmin p53 activation to block HA22T cell proliferation and tumor growth in xenografted nude mice through PI3K–Akt–MDM2 signaling suppression. Food Chem Toxicol 50:1802–1810

    CAS  PubMed  Google Scholar 

  51. El Asrar RA, Margamuljana L, Klaassen H, Nijs M, Marchand A, Chaltin P, Myllykallio H, Becker HF, De Jonghe S, Herdewijn P (2017) Discovery of a new Mycobacterium tuberculosis thymidylate synthase X inhibitor with a unique inhibition profile. Biochem Pharmacol 135:69–78

    Google Scholar 

  52. Evans JC, Mizrahi V (2018) Priming the tuberculosis drug pipeline: New antimycobacterial targets and agents. Curr Opin Microbiol 45:39–46

    CAS  PubMed  Google Scholar 

  53. Fan Y-L, Jin X-H, Huang Z-P, Yu H-F, Zeng Z-G, Gao T, Feng L-S (2018a) Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur J Med Chem 150:347–365

    CAS  PubMed  Google Scholar 

  54. Fan Y-L, Wu J-B, Cheng X-W, Zhang F-Z, Feng L-S (2018b) Fluoroquinolone derivatives and their anti-tubercular activities. Eur J Med Chem 146:554–563

    CAS  PubMed  Google Scholar 

  55. FDA (2018) FDA approves a new antibacterial drug to treat a serious lung disease using a novel pathway to spur innovation. US Food and Drug Aministration https://www.fda.gov/news-events/press-announcements/fda-approves-new-antibacterial-drug-treat-serious-lung-disease-using-novel-pathway-spur-innovation. Accessed Jan 2020

  56. Feldo M, Woźniak M, Wójciak-Kosior M, Sowa I, Kot-Waśik A, Aszyk J, Bogucki J, Zubilewicz T, Bogucka-Kocka A (2018) Influence of diosmin treatment on the level of oxidative stress markers in patients with chronic venous insufficiency. Oxidative Med Cell Longev:2018

  57. Field SK (2015) Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis 6:170–184

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fiorito S, Epifano F, Bruyère C, Mathieu V, Kiss R, Genovese S (2014) Growth inhibitory activity for cancer cell lines of lapachol and its natural and semi-synthetic derivatives. Bioorg Med Chem Lett 24:454–457

    CAS  PubMed  Google Scholar 

  59. Gajbhiye JM, More NA, Patil MD, Ummanni R, Kotapalli SS, Yogeeswari P, Sriram D, Masand VH (2015) Discovery of Rimonabant and its potential analogues as anti-TB drug candidates. Med Chem Res 24:2960–2971

    CAS  Google Scholar 

  60. Ghimire S, van't Boveneind-Vrubleuskaya N, Akkerman OW, de Lange WCM, van Soolingen D, Kosterink JGW, van der Werf TS, Wilffert B, Touw DJ, Alffenaar J-WC (2016) Pharmacokinetic/pharmacodynamic-based optimization of levofloxacin administration in the treatment of MDR-TB. J Antimicrob Chemother 71:2691–2703

    PubMed  Google Scholar 

  61. Gibson EG, Blower TR, Cacho M, Bax BD, Berger JM, Osheroff N (2018) Mechanism of action of Mycobacterium tuberculosis gyrase inhibitors: A novel class of gyrase poisons. ACS Infect Dis

    Google Scholar 

  62. Gns HS, Gr S, Murahari M, Krishnamurthy M (2019) An update on drug repurposing: Re-written saga of the drug’s fate. Biomed Pharmacother 110:700–716

    PubMed  Google Scholar 

  63. Gonzalo X, Casali N, Broda A, Pardieu C, Drobniewski F (2015) Combination of amikacin and doxycycline against multidrug-resistant and extensively drug-resistant tuberculosis. Int J Antimicrob Agents 45:406–412

    CAS  PubMed  Google Scholar 

  64. Grosset JH, Tyagi S, Almeida DV, Converse PJ, Li S-Y, Ammerman NC, Bishai WR, Enarson D, Trébucq A (2013) Assessment of clofazimine activity in a second-line regimen for tuberculosis in mice. Am J Respir Crit Care Med 188:608–612

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gupta R, Lavollay M, Mainardi J-L, Arthur M, Bishai WR, Lamichhane G (2010) The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat Med 16:466–469

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gupta S, Tyagi S, Almeida DV, Maiga MC, Ammerman NC, Bishai WR (2013) Acceleration of tuberculosis treatment by adjunctive therapy with verapamil as an efflux inhibitor. Am J Respir Crit Care Med 188:600–607

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gupta S, Tyagi S, Bishai WR (2015) Verapamil increases the bactericidal activity of bedaquiline against Mycobacterium tuberculosis in a mouse model. Antimicrob Agents Chemother 59:673–676

    PubMed  Google Scholar 

  68. Gurumurthy M, Verma R, Naftalin CM, Hee KH, Lu Q, Tan KH, Issac S, Lin W, Tan A, Seng K-Y, Lee LS-U, Paton NI (2017) Activity of faropenem with and without rifampicin against Mycobacterium tuberculosis: evaluation in a whole-blood bactericidal activity trial. J Antimicrob Chemother 72:2012–2019

    CAS  PubMed  Google Scholar 

  69. Haas CT, Roe JK, Pollara G, Mehta M, Noursadeghi M (2016) Diagnostic ‘omics’ for active tuberculosis. BMC Med 14:37

    PubMed  PubMed Central  Google Scholar 

  70. Halicki PB, Ferrreira LA, de Moura KCG, Carneiro PF, Del Rio KP, Carvalho TSC, Pinto MCFR, Silva PA, Ramos DF (2018) Naphthoquinone derivatives as scaffold to develop new drugs for tuberculosis treatment. Front Microbiol 9:673

    PubMed  PubMed Central  Google Scholar 

  71. Harausz EP, Chervenak KA, Good CE, Jacobs MR, Wallis RS, Sanchez-Felix M, Boom WH, University TBRUaCWR (2016) Activity of nitazoxanide and tizoxanide against Mycobacterium tuberculosis in vitro and in whole blood culture. Tuberculosis (Edinburgh, Scotland) 98:92–96

    CAS  Google Scholar 

  72. Harausz EP, Garcia-Prats AJ, Seddon JA, Schaaf HS, Hesseling AC, Achar J, Bernheimer J, Cruz AT, D’Ambrosio L, Detjen A (2017) New and repurposed drugs for pediatric multidrug-resistant tuberculosis. Practice-based recommendations. Am J Respir Crit Care Med 195:1300–1310

    CAS  PubMed  Google Scholar 

  73. Hartkoorn RC, Sala C, Neres J, Pojer F, Magnet S, Mukherjee R, Uplekar S, Boy-Röttger S, Altmann KH, Cole ST (2012) Towards a new tuberculosis drug: pyridomycin–nature's isoniazid. EMBO Mol Med 4:1032–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Herrmann J, Rybniker J, Müller R (2017) Novel and revisited approaches in antituberculosis drug discovery. Curr Opin Biotechnol 48:94–101

    CAS  PubMed  Google Scholar 

  75. Hoagland DT, Liu J, Lee RB, Lee RE (2016) New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv Drug Deliv Rev 102:55–72

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Holzgrabe U (2015) New griselimycins for treatment of tuberculosis. Chem Biol 22:981–982

    CAS  PubMed  Google Scholar 

  77. Horlacher OP, Hartkoorn RC, Cole ST, Altmann K-H (2013) Synthesis and antimycobacterial activity of 2,1′-dihydropyridomycins. ACS Med Chem Lett 4:264–268

    CAS  PubMed  Google Scholar 

  78. Huang T-S, Kunin CM, Wang H-M, Yan B-S, Huang S-P, Chen Y-S, Shin-Jung Lee S, Syu W Jr (2013) Inhibition of the Mycobacterium tuberculosis reserpine-sensitive efflux pump augments intracellular concentrations of ciprofloxacin and enhances susceptibility of some clinical isolates. J Formos Med Assoc 112:789–794

    CAS  PubMed  Google Scholar 

  79. Imperiale BR, Cataldi ÁA, Morcillo NS (2017) In vitro anti-tuberculosis activity of azole drugs against Mycobacterium tuberculosis clinical isolates. Rev Argent Microbiol 49:332–338

    PubMed  Google Scholar 

  80. Ivanovs A, Salmane-Kulikovska I, Viksna L (2016) The impact of socioeconomic factors on tuberculosis prevalence in Latvia. Age 13:39

    Google Scholar 

  81. Jaiswal I, Jain A, Verma SK, Singh P, Kant S, Singh M (2017) Effect of efflux pump inhibitors on the susceptibility of Mycobacterium tuberculosis to isoniazid. Lung India : official organ of Indian Chest Society 34:499–505

    Google Scholar 

  82. Jang J, Kim R, Woo M, Jeong J, Park DE, Kim G, Delorme V (2017) Efflux attenuates the antibacterial activity of Q203 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 61:e02637–e02616

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jansen RS, Rhee KY (2017) Emerging approaches to tuberculosis drug development: At home in the metabolome. Trends Pharmacol Sci 38:393–405

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jaso A, Zarranz B, Aldana I, Monge A (2005) Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as anti-Mycobacterium tuberculosis agents. J Med Chem 48:2019–2025

    CAS  PubMed  Google Scholar 

  85. Jeyachandran M, Ramesh P, Sriram D, Senthilkumar P, Yogeeswari P (2012) Synthesis and in vitro antitubercular activity of 4-aryl/alkylsulfonylmethylcoumarins as inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem Lett 22:4807–4809

    CAS  PubMed  Google Scholar 

  86. Jiang D, Wang G-Q, Liu X, Zhang Z, Feng L-S, Liu M-L (2018) Isatin derivatives with potential antitubercular activities. J Heterocyclic Chem 55:1263–1279

    CAS  Google Scholar 

  87. Kapp E, Visser H, Sampson SL, Malan SF, Streicher EM, Foka GB, Warner DF, Omoruyi SI, Enogieru AB, Ekpo OE (2017) Versatility of 7-substituted coumarin molecules as antimycobacterial agents, neuronal enzyme inhibitors and neuroprotective agents. Molecules 22:1644

    PubMed Central  Google Scholar 

  88. Kardan-Yamchi J, Kazemian H, Haeili M, Harati AA, Amini S, Feizabadi MM (2019) Expression analysis of 10 efflux pump genes in multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis clinical isolates. J Glob Antimicrob Resist 17:201–208

    PubMed  Google Scholar 

  89. Karkare S, Chung TT, Collin F, Mitchenall LA, McKay AR, Greive SJ, Meyer JJ, Lall N, Maxwell A (2013) The naphthoquinone diospyrin is an inhibitor of DNA gyrase with a novel mechanism of action. J Biol Chem 288:5149–5156

    CAS  PubMed  Google Scholar 

  90. Kaur G, Mangla V, Gupta MK (2015) Quinoline and quinolones: promising scaffolds for future antimycobacterial agents AU - Singh, Sandeep. J Enzyme Inhib Med Chem 30:492–504

    PubMed  Google Scholar 

  91. Kaushik A, Ammerman NC, Tasneen R, Story-Roller E, Dooley KE, Dorman SE, Nuermberger EL, Lamichhane G (2017) In vitro and in vivo activity of biapenem against drug-susceptible and rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother 72:2320–2325

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kawate T, Iwase N, Shimizu M, Stanley SA, Wellington S, Kazyanskaya E, Hung DT (2013) Synthesis and structure–activity relationships of phenyl-substituted coumarins with anti-tubercular activity that target FadD32. Bioorg Med Chem Lett 23:6052–6059

    CAS  PubMed  Google Scholar 

  93. Keam SJ (2019) Pretomanid: First Approval. Drugs 79:1797–1803

    PubMed  Google Scholar 

  94. Keddie S, Bharambe V, Jayakumar A, Shah A, Sanchez V, Adams A, Gnanapavan S (2018) Clinical perspectives into the use of thalidomide for central nervous system tuberculosis. Eur J Neurol 25:1345–1351

    CAS  PubMed  Google Scholar 

  95. Keri RS, Pandule SS, Budagumpi S, Nagaraja BM (2018) Quinoxaline and quinoxaline-1, 4-di-N-oxides: An emerging class of antimycobacterials. Arch Pharm 351:1700325

    Google Scholar 

  96. Kling A, Lukat P, Almeida DV, Bauer A, Fontaine E, Sordello S, Zaburannyi N, Herrmann J, Wenzel SC, König C (2015) Targeting DnaN for tuberculosis therapy using novel griselimycins. Sci 348:1106–1112

    CAS  Google Scholar 

  97. Koen N, van Breda SV, Loots DT (2018a) Elucidating the antimicrobial mechanisms of colistin sulfate on Mycobacterium tuberculosis using metabolomics. Tuberculosis 111:14–19

    CAS  PubMed  Google Scholar 

  98. Koen N, van Breda SV, Loots DT (2018b) Metabolomics of colistin methanesulfonate treated Mycobacterium tuberculosis. Tuberculosis 111:154–160

    CAS  PubMed  Google Scholar 

  99. Kolyva AS, Karakousis PC (2012) Old and new TB drugs: mechanisms of action and resistance. Understanding tuberculosis-new approaches to fighting against drug resistance. Dr. PereJoan Cardona (Ed.), ISBN: 978-953-307-948-6, InTech, Available from: http://www.intechopen.com/books/understanding-tuberculosis-new-approaches-to-fighting-against-drugresistance/old-and-new-tb-drugs-mechanisms-of-action-and-resistance

  100. Korkegian A, O’Malley T, Xia Y, Zhou Y, Carter DS, Sunde B, Flint L, Thompson D, Ioerger TR, Sacchettini J (2018) The 7-phenyl benzoxaborole series is active against Mycobacterium tuberculosis. Tuberculosis 108:96–98

    CAS  PubMed  Google Scholar 

  101. Krasavin M, Parchinsky V, Kantin G, Manicheva O, Dogonadze M, Vinogradova T, Karge B, Brönstrup M (2017) New nitrofurans amenable by isocyanide multicomponent chemistry are active against multidrug-resistant and poly-resistant Mycobacterium tuberculosis. Bioorg Med Chem 25:1867–1874

    CAS  PubMed  Google Scholar 

  102. Kroesen VM, Gröschel MI, Martinson N, Zumla A, Maeurer M, van der Werf TS, Vilaplana C (2017) Non-Steroidal anti-inflammatory drugs as host-directed therapy for tuberculosis: A systematic review. Front Immunol:8

  103. Kumar V, Patel S, Jain R (2018) New structural classes of antituberculosis agents. Med Res Rev 38:684–740

    PubMed  Google Scholar 

  104. Lakshmanan M, Xavier AS (2013) Bedaquiline – The first ATP synthase inhibitor against multi drug resistant tuberculosis. J Young Pharm 5:112–115

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lam KKY, Zheng X, Forestieri R, Balgi AD, Nodwell M, Vollett S, Anderson HJ, Andersen RJ, Av-Gay Y, Roberge M (2012) Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis. PLoS Pathog 8:e1002691

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lan Q-Y, Liu Q-L, Cai J, Liu A-W (2015) 3-cinnamoyl-4-hydroxy-6-methyl-2H-pyran-2-one (CHP) inhibits human ovarian cell proliferation by inducing apoptosis. Int J Clin Exp Pathol 8:155–163

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lange C, Chesov D, Heyckendorf J (2019) Clofazimine for the treatment of multidrug-resistant tuberculosis. Clin Microbiol Infect 25:128–130

    CAS  PubMed  Google Scholar 

  108. Lechartier B, Cole ST (2015) Mode of action of clofazimine and combination therapy with benzothiazinones against Mycobacterium tuberculosis. Antimicrob Agents Chemother 59:4457–4463

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee EY, Caffrey AR (2018) Thrombocytopenia with Tedizolid and Linezolid. Antimicrob Agents Chemother 62:e01453–e01417

    PubMed  Google Scholar 

  110. Lee RE, Hurdle JG, Liu J, Bruhn DF, Matt T, Scherman MS, Vaddady PK, Zheng Z, Qi J, Akbergenov R (2014a) Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nat Med 20:152

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee RE, Hurdle JG, Liu J, Bruhn DF, Matt T, Scherman MS, Vaddady PK, Zheng Z, Qi J, Akbergenov R, Das S, Madhura DB, Rathi C, Trivedi A, Villellas C, Lee RB, Rakesh WSL, Sun D, McNeil MR, Ainsa JA, Boshoff HI, Gonzalez-Juarrero M, Meibohm B, Böttger EC, Lenaerts AJ (2014b) Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nat Med 20:152–158

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee Y-J, Han SK, Park JH, Lee JK, Kim DK, Chung HS, Heo EY (2018) The effect of metformin on culture conversion in tuberculosis patients with Diabetes mellitus. Korean J Intern Med 33:933–940

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee JJ, Lee S-K, Song N, Nathan TO, Swarts BM, Eum S-Y, Ehrt S, Cho S-N, Eoh H (2019) Transient drug-tolerance and permanent drug resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis. Nat Commun 10:2928

    PubMed  PubMed Central  Google Scholar 

  114. Lewis JM, Sloan DJ (2015) The role of delamanid in the treatment of drug-resistant tuberculosis. Ther Clin Risk Manag 11:779–791

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lin Y, Zhang H, Zhu N, Wang X, Han Y, Chen M, Jiang J, Si S (2018) Identification of TB-E12 as a novel FtsZ inhibitor with anti-tuberculosis activity. Tuberculosis 110:79–85

    CAS  PubMed  Google Scholar 

  116. Liu X, Zhang X, Zhang J, Kang N, Zhang N, Wang H, Xue J, Yu J, Yang Y, Cui H, Cui L, Wang L, Wang X (2014) Diosmin protects against cerebral ischemia/reperfusion injury through activating JAK2/STAT3 signal pathway in mice. Neuroscience 268:318–327

    CAS  PubMed  Google Scholar 

  117. Liu Y, Tan S, Huang L, Abramovitch RB, Rohde KH, Zimmerman MD, Chen C, Dartois V, VanderVen BC, Russell DG (2016) Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. J Exp Med 213:809–825

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lönnroth K, Williams BG, Cegielski P, Dye C (2010) A consistent log-linear relationship between tuberculosis incidence and body mass index. Int J Epidemiol 39:149–155

    PubMed  Google Scholar 

  119. Loots DT (2014) An altered Mycobacterium tuberculosis metabolome induced by katG mutations resulting in isoniazid resistance. Antimicrob Agents Chemother 58:2144–2149

    PubMed Central  Google Scholar 

  120. Loots DT (2016) TB or not TB? Improving the understanding and diagnosis of tuberculosis through metabolomics. Biomark Med 10:1025–1028

    CAS  PubMed  Google Scholar 

  121. Luies L, Reenen MV, Ronacher K, Walzl G, Loots DT (2017) Predicting tuberculosis treatment outcome using metabolomics. Biomark Med 11:1057–1067

    CAS  PubMed  Google Scholar 

  122. Mafukidze A, Harausz E, Furin J (2016) An update on repurposed medications for the treatment of drug-resistant tuberculosis. Expert Rev Clin Pharmacol 9:1331–1340

    CAS  PubMed  Google Scholar 

  123. Maiga M, Agarwal N, Ammerman NC, Gupta R, Guo H, Maiga MC, Lun S, Bishai WR (2012) Successful shortening of tuberculosis treatment using adjuvant host-directed therapy with FDA-approved phosphodiesterase inhibitors in the mouse model. PLoS One 7:e30749

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Maiga M, Ammerman NC, Maiga MC, Tounkara A, Siddiqui S, Polis M, Murphy R, Bishai WR (2013) Adjuvant host-directed therapy with types 3 and 5 but not type 4 phosphodiesterase inhibitors shortens the duration of tuberculosis treatment. J Infect Dis 208:512–519

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Maitra A, Bates S, Kolvekar T, Devarajan PV, Guzman JD, Bhakta S (2015) Repurposing—a ray of hope in tackling extensively drug resistance in tuberculosis. Int J Infect Dis 32:50–55

    PubMed  Google Scholar 

  126. Mangasuli SN, Hosamani KM, Devarajegowda HC, Kurjogi MM, Joshi SD (2018) Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents. Eur J Med Chem 146:747–756

    CAS  PubMed  Google Scholar 

  127. Mata-Santos T, Pinto NF, Mata-Santos HA, De Moura KG, Carneiro PF, Carvalho TS, Del Rio KP, Pinto MCFR, Martins LR, Fenalti JM (2015) Anthelmintic activity of lapachol, β-lapachone and its derivatives against Toxocara canis larvae. Rev Inst Med Trop São Paulo 57:197–204

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mayosi BM, Ntsekhe M, Bosch J, Pandie S, Jung H, Gumedze F, Pogue J, Thabane L, Smieja M, Francis V, Joldersma L, Thomas KM, Thomas B, Awotedu AA, Magula NP, Naidoo DP, Damasceno A, Chitsa Banda A, Brown B, Manga P, Kirenga B, Mondo C, Mntla P, Tsitsi JM, Peters F, Essop MR, Russell JBW, Hakim J, Matenga J, Barasa AF, Sani MU, Olunuga T, Ogah O, Ansa V, Aje A, Danbauchi S, Ojji D, Yusuf S (2014) Prednisolone and Mycobacterium indicus pranii in Tuberculous Pericarditis. N Engl J Med 371:1121–1130

    PubMed  PubMed Central  Google Scholar 

  129. Meintjes G, Stek C, Blumenthal L, Thienemann F, Schutz C, Buyze J, Ravinetto R, van Loen H, Nair A, Jackson A, Colebunders R, Maartens G, Wilkinson RJ, Lynen L (2018) Prednisone for the prevention of paradoxical tuberculosis-associated IRIS. N Engl J Med 379:1915–1925

    CAS  PubMed  Google Scholar 

  130. Mirnejad R, Asadi A, Khoshnood S, Mirzaei H, Heidary M, Fattorini L, Ghodousi A, Darban-Sarokhalil D (2018) Clofazimine: A useful antibiotic for drug-resistant tuberculosis. Biomed Pharmacother 105:1353–1359

    CAS  PubMed  Google Scholar 

  131. Mishra AK, Yabaji SM, Dubey RK (2018) Evaluation of isoprinosine to be repurposed as an adjunct anti-tuberculosis chemotherapy. Med Hypotheses 115:77–80

    CAS  PubMed  Google Scholar 

  132. Mishra G, Caminero JA (2018) First successful use of low dose amoxicillin-clavulanic acid in management of drug resistant tuberculosis. J Clin Diagn Res 12:OD8–OD10

    Google Scholar 

  133. Mishra A, Surolia A (2018) Mycobacterium tuberculosis: Surviving and indulging in an unwelcoming host. IUBMB Life 70:917–925

    CAS  PubMed  Google Scholar 

  134. Modongo C, Sobota RS, Kesenogile B, Ncube R, Sirugo G, Williams SM, Zetola NM (2014) Successful MDR-TB treatment regimens including amikacin are associated with high rates of hearing loss. BMC Infect Dis 14:542–542

    PubMed  PubMed Central  Google Scholar 

  135. Molina-Torres CA, Barba-Marines A, Valles-Guerra O, Ocampo-Candiani J, Cavazos-Rocha N, Pucci MJ, Castro-Garza J, Vera-Cabrera L (2014) Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages. Ann Clin Microbiol Antimicrob 13:13

    PubMed  PubMed Central  Google Scholar 

  136. Mori G, Chiarelli LR, Riccardi G, Pasca MR (2017) New prodrugs against tuberculosis. Drug Discov Today 22:519–525

    CAS  PubMed  Google Scholar 

  137. Naftalin CM, Verma R, Gurumurthy M, Hee KH, Lu Q, Yeo BCM, Tan KH, Lin W, Yu B, Seng KY (2018) Adjunctive use of celecoxib with anti-tuberculosis drugs: evaluation in a whole-blood bactericidal activity model. Sci Rep 8:13491

    PubMed  PubMed Central  Google Scholar 

  138. NCT00164463 Cg- TBTC Study 27/28 PK: Pharmacokinetic issues in the use of moxifloxacin for treatment of tuberculosis. https://clinicaltrials.gov/ct2/show/NCT00164463. Accessed Jan 2020

  139. NCT00425113 Cg- A randomized, double-blind, placebo-controlled phase ii study of metronidazole combined with antituberculous chemotherapy vs. antituberculous chemotherapy with placebo in subjects with multi-drug resistant pulmonary tuberculosis. https://clinicaltrials.gov/ct2/show/NCT00425113. Accessed Jan 2020

  140. NCT00495339 Cg- Multicenter open non-comparative clinical study to evaluate the efficacy and safety of three months tavanic course (levofloxacin) in combine treatment of multi-drug-resistant tuberculosis (MDR-TB). https://clinicaltrials.gov/ct2/show/NCT00495339. Accessed Jan 2020

  141. NCT01225640 Cg- A phase 2a, open-label, randomized study in treatment-naive, sputum smear positive subjects with drug-sensitive pulmonary tuberculosis to assess early bactericidal activity (eba) and whole blood activity (WBA) Of PNU-100480 https://clinicaltrials.gov/ct2/show/NCT01225640. Accessed Jan 2020

  142. NCT01424670 Cg- A phase 3, multicenter, randomized, double-blind, placebo-controlled, parallel group trial to evaluate the safety and efficacy of delamanid (OPC-67683) administered orally as 200 mg total daily dose for six months in patients with pulmonary sputum culture-positive, multidrug-resistant tuberculosis. https://clinicaltrials.gov/ct2/show/NCT01424670. Accessed Jan 2020

  143. NCT01521364 Cg- The pharmacokinetic effect of clarithromycin on the auc0-12h of linezolid in multidrug-resistant and extensively drug-resistant tuberculosis (MDR/XDR-TB) patients. https://clinicaltrials.gov/ct2/show/NCT01521364. Accessed Jan 2020

  144. NCT01832987 Cg- Pharmacokinetic parameters of 960 mg co-trimoxazole once daily in patients with tuberculosis. https://clinicaltrials.gov/ct2/show/NCT01832987. Accessed Jan 2020

  145. NCT01924286 Cg- Preventing tuberculosis-associated immune reconstitution inflammatory syndrome in high-risk patients: A randomized placebo-controlled trial of prednisone. https://clinicaltrials.gov/ct2/show/NCT01924286. Accessed Jan 2020

  146. NCT02114684 Cg- An open label randomized controlled clinical trial comparing a 24 week oral regimen containing moxifloxacin with a 24 week standard drug regimen for the treatment of smear-positive pulmonary tuberculosis in patients previously treated for TB. https://clinicaltrials.gov/ct2/show/NCT02114684. Accessed Jan 2020

  147. NCT02169141 Cg- Pharmacokinetics of levofloxacin and capreomycin in MDR-TB patients. https://clinicaltrials.gov/ct2/show/NCT02169141. Accessed Jan 2020

  148. NCT02276755 Cg- Vitamin D in TB prevention in school age children. https://clinicaltrials.gov/ct2/show/NCT02276755. Accessed Jan 2020

  149. NCT02279875 Cg- A phase 2 dose-ranging trial to evaluate the bactericidal activity, safety, tolerability and pharmacokinetics of linezolid in adult subjects with newly diagnosed drug-sensitive, smear-positive pulmonary tuberculosis. https://clinicaltrials.gov/ct2/show/NCT02279875. Accessed Jan 2020

  150. NCT02333799 Cg- A phase 3 open-label trial assessing the safety and efficacy of bedaquiline plus PA-824 plus linezolid in subjects with pulmonary infection of either extensively drug-resistant tuberculosis (XDR-TB) or treatment intolerant / non-responsive multi-drug resistant tuberculosis (MDR-TB). https://clinicaltrials.gov/ct2/show/NCT02333799. Accessed Jan 2020

  151. NCT02365623 Cg- An open-label study to explore the safety, efficacy and pharmacokinetics of TMC207 in Japanese patients with pulmonary multi-drug resistant tuberculosis (MDR-TB). https://clinicaltrials.gov/ct2/show/NCT02365623. Accessed Jan 2020

  152. NCT02409290 Cg- STREAM: The evaluation of a standard treatment regimen of anti-tuberculosis drugs for patients with MDR-TB. https://clinicaltrials.gov/ct2/show/NCT02409290. Accessed Jan 2020

  153. NCT02454205 Cg- Evaluating a new treatment regimen for patients with multidrug-resistant TB (MDR-TB) - a prospective open-label randomised controlled trial. https://clinicaltrials.gov/ct2/show/NCT02454205. Accessed Jan 2020

  154. NCT02503839 Cg- Therapeutic vaccination and immune modulation - new treatment strategies for the multidrug-resistant tuberculosis pandemic; an open label phase i clinical trial of the therapeutic TB H56:IC31 vaccine and cyclooxygenase-inhibitors. https://clinicaltrials.gov/ct2/show/NCT02503839. Accessed Jan 2020

  155. NCT02589782 Cg- A randomised, controlled, open-label, phase II-III trial to evaluate the safety and efficacy of regimens containing bedaquiline and pretomanid for the treatment of adult patients with pulmonary multidrug resistant tuberculosis. https://clinicaltrials.gov/ct2/show/NCT02589782. Accessed Jan 2020

  156. NCT02684240 Cg- A 14 day early bactericidal activity study of nitazoxanide for the treatment of tuberculosis. https://clinicaltrials.gov/ct2/show/NCT02684240. Accessed Jan 2020

  157. NCT02754765 Cg- Evaluating newly approved drugs for multidrug-resistant TB (endTB): A clinical trial. https://clinicaltrials.gov/ct2/show/NCT02754765. Accessed Jan 2020

  158. NCT02774993 Cg- Doxycycline and the modulation of host immunopathology in human pulmonary tuberculosis: A pilot study. https://clinicaltrials.gov/ct2/show/NCT02774993. Accessed Jan 2020

  159. NCT02781909 Cg- Pilot study to estimate the potential efficacy and safety of using adjunctive ibuprofen for the treatment of XDR tuberculosis. https://clinicaltrials.gov/ct2/show/NCT02781909. Accessed Jan 2020

  160. NCT02968927 Cg- A Ph2 randomized trial to evaluate the safety preliminary efficacy and biomarker response of host directed therapies added to rifabutin-modified standard therapy in adults with drug-sensitive smear-positive pulmonary TB. https://clinicaltrials.gov/ct2/show/NCT02968927. Accessed Jan 2020

  161. NCT03000517 Cg- Pharmacokinetics of levofloxacin in MDR-TB patients. https://clinicaltrials.gov/ct2/show/NCT03000517. Accessed Jan 2020

  162. NCT03033329 Cg- A randomized, double-blind, placebo controlled three-part study of the safety, tolerability, and pharmacokinetics of MRX 4 administered intravenously to healthy volunteers in single ascending and multiple ascending dose cohorts, and bioavailability of oral MRX-4 versus intravenous administration. https://clinicaltrials.gov/show/NCT03033329. Accessed Jan 2020

  163. NCT03086486 Cg- A phase 3 partially-blinded, randomized trial assessing the safety and efficacy of various doses and treatment durations of linezolid plus bedaquiline and pretomanid in participants with pulmonary infection of either extensively drug-resistant tuberculosis (XDR-TB), pre-XDR-TB or treatment intolerant or non-responsive multi-drug resistant tuberculosis (MDR-TB). https://clinicaltrials.gov/ct2/show/NCT03086486. Accessed Jan 2020

  164. NCT03160638 Cg- A prospective, randomized pilot study of the immunomodulatory effects of azithromycin in adults with pulmonary tuberculosis - Full Text View - (accessed January, 2020). https://clinicaltrials.gov/ct2/show/NCT03160638. Accessed Jan 2020

  165. NCT03174184 Cg- A phase 2a study of the early bactericidal activity of rifampin (RIF) in combination with meropenem plus amoxicillin/clavulanate among adults with rifampin-resistant or rifampin-susceptible pulmonary tuberculosis. https://clinicaltrials.gov/ct2/show/NCT03174184. Accessed Jan 2020

  166. NCT03199313 Cg- A phase 1, randomized, double-blind, placebo-controlled, single ascending dose study to evaluate the safety, tolerability, and pharmacokinetics of sutezolid in healthy adult subjects. https://clinicaltrials.gov/ct2/show/NCT03199313. Accessed Jan 2020

  167. NCT03199339 Cg- Phase 1, partially-blind, placebo controlled randomized, combined SAD with food effect cohort and MAD and DDI Study to evaluate safety, tolerability, PK and PK interaction between TBA-7371 with midazolam and bupropion in healthy subjects. https://clinicaltrials.gov/ct2/show/NCT03199339. Accessed Jan 2020

  168. NCT03237182 Cg- The individualized M(X) Drug-resistant TB treatment strategy study a strategy to improve treatment outcomes in patients with drug-resistant TB. https://clinicaltrials.gov/ct2/show/NCT03237182. Accessed Jan 2020

  169. NCT03338621 Cg- An open-label, partially randomized trial to evaluate the efficacy, safety and tolerability of a 4-month treatment of bedaquiline plus pretomanid plus moxifloxacin plus pyrazinamide (BPaMZ) compared to a 6-month treatment of hrze/hr (control) in adult participants with drug-sensitive smear-positive pulmonary tuberculosis (DS-TB) and a 6-month Treatment of BPaMZ in adult participants with drug resistant, smear-positive pulmonary tuberculosis (DR-TB). https://clinicaltrials.gov/ct2/show/NCT03338621. Accessed Jan 2020

  170. NCT03545373 Cg- Randomised controlled clinical trial investigating benefits of using response to broad spectrum antibiotics as an exclusion diagnostic for tuberculosis (TB) in primary care adult patients versus risk of antimicrobial resistance (AMR). https://clinicaltrials.gov/ct2/show/NCT03545373. Accessed Jan 2020

  171. NCT03563599 Cg- An open-label randomized study to evaluate the early bactericidal activity, safety, tolerability, and pharmacokinetics of multiple oral doses of telacebec (Q203) in treatment-naïve patients with newly diagnosed drug-sensitive sputum smear-positive pulmonary tuberculosis. https://clinicaltrials.gov/ct2/show/NCT03563599. Accessed Jan 2020

  172. NCT03758612 Cg- A phase 1, partially-blinded, placebo-controlled, randomized, single ascending dose (SAD) with a food effect cohort study to evaluate the safety, tolerability, and pharmacokinetics of TBI-223 in healthy adult participants. https://clinicaltrials.gov/ct2/show/NCT03758612. Accessed Jan 2020

  173. NCT04062201 Cg- An open label, randomized controlled trial to establish the efficacy and safety of a study strategy consisting of 6 months of bedaquiline (BDQ), delamanid (DLM), and linezolid (LNZ), with levofloxacin (LVX) and clofazimine (CFZ) compared to the current south african standard of care (control strategy) for 9 months for the treatment of rifampicin resistant tuberculosis (RR-TB). https://clinicaltrials.gov/ct2/show/NCT04062201. Accessed Jan 2020

  174. Neto JB, da Silva CR, Neta MA, Campos RS, Siebra JT, Silva RA, Gaspar DM, Magalhães HI, de Moraes MO, Lobo MD (2014) Antifungal activity of naphthoquinoidal compounds in vitro against fluconazole-resistant strains of different Candida species: a special emphasis on mechanisms of action on Candida tropicalis. PLoS One 9

  175. Niu H, Wang W, Li J, Lei Y, Zhao Y, Yang W, Zhao C, Lin B, Song S, Wang S (2017) A novel structural class of coumarin-chalcone fibrates as PPARα/γ agonists with potent antioxidant activities: Design, synthesis, biological evaluation and molecular docking studies. Eur J Med Chem 138:212–220

    CAS  PubMed  Google Scholar 

  176. Ordonez A, Maiga M, Gupta S, Weinstein E, Bishai W, Jain S (2014) Novel adjunctive therapies for the treatment of tuberculosis. Curr Mol Med 14:385–395

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Osei Sekyere J, Amoako DG (2017) Carbonyl Cyanide m-Chlorophenylhydrazine (CCCP) reverses resistance to colistin, but not to carbapenems and tigecycline in multidrug-resistant Enterobacteriaceae. Front Microbiol 8

  178. Pan Y, Li P, Xie S, Tao Y, Chen D, Dai M, Hao H, Huang L, Wang Y, Wang L, Liu Z, Yuan Z (2016) Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents. Bioorg Med Chem Lett 26:4146–4153

    CAS  PubMed  Google Scholar 

  179. Pavić K, Perković I, Pospíšilová Š, Machado M, Fontinha D, Prudêncio M, Jampilek J, Coffey A, Endersen L, Rimac H (2018) Primaquine hybrids as promising antimycobacterial and antimalarial agents. Eur J Med Chem 143:769–779

    PubMed  Google Scholar 

  180. Pereyra CE, Dantas RF, Ferreira SB, Gomes LP, Silva-Jr FP (2019) The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int 19:207

    PubMed  PubMed Central  Google Scholar 

  181. Perumal R, Padayatchi N, Yende-Zuma N, Naidoo A, Govender D, Naidoo K (2019) A moxifloxacin-based regimen for the treatment of recurrent, drug-sensitive pulmonary tuberculosis: An open-label, randomized, controlled trial. Clin Infect Dis 70:90–98

    Google Scholar 

  182. Pethe K, Bifani P, Jang J, Kang S, Park S, Ahn S, Jiricek J, Jung J, Jeon HK, Cechetto J, Christophe T, Lee H, Kempf M, Jackson M, Lenaerts AJ, Pham H, Jones V, Seo MJ, Kim YM, Seo M, Seo JJ, Park D, Ko Y, Choi I, Kim R, Kim SY, Lim S, Yim S-A, Nam J, Kang H, Kwon H, Oh C-T, Cho Y, Jang Y, Kim J, Chua A, Tan BH, Nanjundappa MB, Rao SPS, Barnes WS, Wintjens R, Walker JR, Alonso S, Lee S, Kim J, Oh S, Oh T, Nehrbass U, Han S-J, No Z, Lee J, Brodin P, Cho S-N, Nam K, Kim J (2013) Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med 19:1157–1160

    CAS  PubMed  Google Scholar 

  183. Pieterman ED, Te Brake LHM, de Knegt GJ, van der Meijden A, Alffenaar J-WC, Bax HI, Aarnoutse RE, de Steenwinkel JEM (2018) Assessment of the additional value of verapamil to a moxifloxacin and linezolid combination regimen in a murine tuberculosis model. Antimicrob Agents Chemother 62:e01354–e01318

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Pule CM, Sampson SL, Warren RM, Black PA, van Helden PD, Victor TC, Louw GE (2015) Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother 71:17–26

    PubMed  Google Scholar 

  185. Pushkaran AC, Vinod V, Vanuopadath M, Nair SS, Nair SV, Vasudevan AK, Biswas R, Mohan CG (2019) Combination of repurposed drug diosmin with amoxicillin-clavulanic acid causes synergistic inhibition of mycobacterial growth. Sci Rep 9:6800–6800

    PubMed  PubMed Central  Google Scholar 

  186. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41–58

    CAS  PubMed  Google Scholar 

  187. Rakesh BDF, Scherman MS, Woolhiser LK, Madhura DB, Maddox MM, Singh AP, Lee RB, Hurdle JG, McNeil MR, Lenaerts AJ, Meibohm B, Lee RE (2014) Pentacyclic nitrofurans with in vivo efficacy and activity against nonreplicating Mycobacterium tuberculosis. PLoS One 9:e87909

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Ramesh R, Shingare RD, Kumar V, Anand ABS, Veeraraghavan S, Viswanadha S, Ummanni R, Gokhale R, Srinivasa Reddy D (2016) Repurposing of a drug scaffold: Identification of novel sila analogues of rimonabant as potent antitubercular agents. Eur J Med Chem 122:723–730

    CAS  PubMed  Google Scholar 

  189. Ramón-García S, González del Río R, Villarejo AS, Sweet GD, Cunningham F, Barros D, Ballell L, Mendoza-Losana A, Ferrer-Bazaga S, Thompson CJ (2016) Repurposing clinically approved cephalosporins for tuberculosis therapy. Sci Rep 6:34293

    PubMed  PubMed Central  Google Scholar 

  190. Ran K, Gao C, Deng H, Lei Q, You X, Wang N, Shi Y, Liu Z, Wei W, Peng C, Xiong L, Xiao K, Yu L (2016) Identification of novel 2-aminothiazole conjugated nitrofuran as antitubercular and antibacterial agents. Bioorg Med Chem Lett 26:3669–3674

    CAS  PubMed  Google Scholar 

  191. Rayasam GV, Balganesh TS (2015) Exploring the potential of adjunct therapy in tuberculosis. Trends Pharmacol Sci 36:506–513

    CAS  PubMed  Google Scholar 

  192. Reddy DS, Hosamani KM, Devarajegowda HC (2015a) Design, synthesis of benzocoumarin-pyrimidine hybrids as novel class of antitubercular agents, their DNA cleavage and X-ray studies. Eur J Med Chem 101:705–715

    CAS  PubMed  Google Scholar 

  193. Reddy DS, Hosamani KM, Devarajegowda HC, Kurjogi MM (2015b) A facile synthesis and evaluation of new biomolecule-based coumarin–thiazoline hybrids as potent anti-tubercular agents with cytotoxicity, DNA cleavage and X-ray studies. RSC Adv 5:64566–64581

    CAS  Google Scholar 

  194. Reddy DS, Kongot M, Netalkar SP, Kurjogi MM, Kumar R, Avecilla F, Kumar A (2018) Synthesis and evaluation of novel coumarin-oxime ethers as potential anti-tubercular agents: Their DNA cleavage ability and BSA interaction study. Eur J Med Chem 150:864–875

    CAS  PubMed  Google Scholar 

  195. Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577–1585

    CAS  PubMed  PubMed Central  Google Scholar 

  196. RESIST-TB Research excellence to stop TB resistance. http://www.resisttb.org/. Accessed Jan 2020

  197. Rosenthal IM, Tasneen R, Peloquin CA, Zhang M, Almeida D, Mdluli KE, Karakousis PC, Grosset JH, Nuermberger EL (2012) Dose-ranging comparison of rifampin and rifapentine in two pathologically distinct murine models of tuberculosis. Antimicrob Agents Chemother 56:4331–4340

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Ryan NJ, Lo JH (2014) Delamanid: First global approval. Drugs 74:1041–1045

    CAS  PubMed  Google Scholar 

  199. Rybniker J, Kohl TA, Barilar I, Niemann S (2019) No evidence for acquired mutations associated with cytochrome & inhibitor resistance in 13,559 Clinical Mycobacterium tuberculosis complex isolates. Antimicrob Agents Chemother 63:e01317–e01318

    CAS  PubMed  Google Scholar 

  200. Rybniker J, Vocat A, Sala C, Busso P, Pojer F, Benjak A, Cole ST (2015) Lansoprazole is an antituberculous prodrug targeting cytochrome bc1. Nat Commun 6:7659–7659

    PubMed  PubMed Central  Google Scholar 

  201. Sabir N, Hussain T, Mangi MH, Zhao D, Zhou X (2019) Matrix metalloproteinases: Expression, regulation and role in the immunopathology of tuberculosis. Cell Prolif 0:e12649

  202. Salomon JJ, Galeron P, Schulte N, Morow PR, Severynse-Stevens D, Huwer H, Daum N, Lehr C-M, Hickey AJ, Ehrhardt C (2013) Biopharmaceutical in vitro characterization of CPZEN-45, a drug candidate for inhalation therapy of tuberculosis. Ther Deliv 4:915–923

    CAS  PubMed  Google Scholar 

  203. Santivañez-Veliz M, Pérez-Silanes S, Torres E, Moreno-Viguri E (2016) Design and synthesis of novel quinoxaline derivatives as potential candidates for treatment of multidrug-resistant and latent tuberculosis. Bioorg Med Chem Lett 26:2188–2193

    PubMed  PubMed Central  Google Scholar 

  204. Savoia D (2016) New antimicrobial approaches: Reuse of old drugs. Curr Drug Targets 17:731–738

    CAS  PubMed  Google Scholar 

  205. Shakya A, Bhat HR, Ghosh SK (2018) Update on nitazoxanide: a multifunctional chemotherapeutic agent. Curr Drug Discov Technol 15:201–213

    CAS  PubMed  Google Scholar 

  206. Shamkuwar CA, Meshram SH, Mahakalkar SM (2017) Levamisole as an adjuvant to short-course therapy in newly diagnosed pulmonary tuberculosis patients. Adv Biomed Res 6:37–37

    PubMed  PubMed Central  Google Scholar 

  207. Sharma D, Dhuriya YK, Deo N, Bisht D (2017) Repurposing and revival of the drugs: A new approach to combat the drug resistant tuberculosis. Front Microbiol 8:2452–2452

    PubMed  PubMed Central  Google Scholar 

  208. Shoen C, DeStefano M, Hafkin B, Cynamon M (2018) In vitro and in vivo activities of contezolid (MRX-I) against Mycobacterium tuberculosis. Antimicrob Agents Chemother 62:e00493–e00418

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Singh V, Mizrahi V (2017) Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug Discov Today 22:503–509

    CAS  PubMed  Google Scholar 

  210. Sinha D, Pandey S, Singh R, Tiwari V, Sad K, Tandon V (2017) Synergistic efficacy of bisbenzimidazole and carbonyl cyanide 3-chlorophenylhydrazone combination against MDR bacterial strains. Sci Rep 7:44419

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Srinivasan S, Pari L (2012) Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Chem Biol Interact 195:43–51

    CAS  PubMed  Google Scholar 

  212. Srivastava S, Deshpande D, Nuermberger E, Lee PS, Cirrincione K, Dheda K, Gumbo T (2018) The sterilizing effect of intermittent tedizolid for pulmonary tuberculosis. Clin Infect Dis 67:S336–S341

    CAS  PubMed  PubMed Central  Google Scholar 

  213. StopTBPartnership (2020a) 14 Day early bactericidal activity study of nitazoxanide for the treatment of tuberculosis. https://www.newtbdrugs.org/pipeline/trials/nitzoxanide-nzt001–14-day-eba. Accessed Jan 2020

  214. StopTBPartnership (2020b) Pragmatic clinical trial for a more effective concise and less toxic MDR-TB treatment regimen(s). https://www.newtbdrugs.org/pipeline/trials/tb-practecal. Accessed Jan 2020

  215. StopTBPartnership (2020c) STREAM: The evaluation of a standard treatment regimen of anti-tuberculosis drugs for patients with MDR-TB. https://www.newtbdrugs.org/pipeline/trials/stream-trial-stage-2. Accessed Jan 2020

  216. Surineni G, Marvadi SK, Yogeeswari P, Sriram D, Kantevari S (2018) Dibenzofuran, dibenzothiophene and N-methyl carbazole tethered 2-aminothiazoles and their cinnamamides as potent inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem Lett 28:1610–1614

    CAS  PubMed  Google Scholar 

  217. Swanepoel CC, Loots DT (2014) The use of functional genomics in conjunction with metabolomics for Mycobacterium tuberculosis research. Dis Markers 2014:1–12

    Google Scholar 

  218. Swanson RV, Ammerman NC, Ngcobo B, Adamson J, Moodley C, Dorasamy A, Moodley S, Mgaga Z, Bester LA, Singh SD (2016) Clofazimine contributes sustained antimicrobial activity after treatment cessation in a mouse model of tuberculosis chemotherapy. Antimicrob Agents Chemother 60:2864–2869

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327

    Google Scholar 

  220. Tanner L, Haynes RK, Wiesner L (2019) An in vitro ADME and in vivo pharmacokinetic study of novel Tb-active decoquinate derivatives. Front Pharmacol 10

  221. Tiberi S, Muñoz-Torrico M, Duarte R, Dalcolmo M, D’Ambrosio L, Zumla A (2018) Migliori G-B. New drugs and perspectives for new anti-tuberculosis regimens, Rev Port Pneumol (English Edition)

    Google Scholar 

  222. Tiberi S, Payen M-C, Sotgiu G, D’Ambrosio L, Alarcon Guizado V, Alffenaar JW, Abdo Arbex M, Caminero JA, Centis R, De Lorenzo S, Gaga M, Gualano G, Roby Arias AJ, Scardigli A, Skrahina A, Solovic I, Sulis G, Tadolini M, Akkerman OW, Alarcon Arrascue E, Aleska A, Avchinko V, Bonini EH, Chong Marín FA, Collahuazo López L, de Vries G, Dore S, Kunst H, Matteelli A, Moschos C, Palmieri F, Papavasileiou A, Spanevello A, Vargas Vasquez D, Viggiani P, White V, Zumla A, Migliori GB (2016) Effectiveness and safety of meropenem/clavulanate-containing regimens in the treatment of MDR- and XDR-TB. Eur Respir J 47:1235–1243

    CAS  PubMed  Google Scholar 

  223. Tseng C-H (2018) Metformin decreases risk of tuberculosis infection in type 2 diabetes patients. J Clin Med 7:264

    CAS  PubMed Central  Google Scholar 

  224. Tyagi S, Ammerman NC, Li S-Y, Adamson J, Converse PJ, Swanson RV, Almeida DV, Grosset JH (2015) Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis. Proc Natl Acad Sci 112:869–874

    CAS  PubMed  Google Scholar 

  225. Uc-Cachón AH, Borges-Argáez R, Said-Fernández S, Vargas-Villarreal J, González-Salazar F, Méndez-González M, Cáceres-Farfán M, Molina-Salinas GM (2014) Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulm Pharmacol Ther 27:114–120

    PubMed  Google Scholar 

  226. van’t Boveneind-Vrubleuskaya N, Seuruk T, van Hateren K, van der Laan T, Kosterink JGW, van der Werf TS, van Soolingen D, van den Hof S, Skrahina A, Alffenaar J-WC (2017) Pharmacokinetics of levofloxacin in multidrug- and extensively drug-resistant tuberculosis patients. Antimicrob Agents Chemother 61:e00343–e00317

    Google Scholar 

  227. Van Breda SV, Buys A, Apostolides Z, Nardell EA, Stoltz AC (2015) The antimicrobial effect of colistin methanesulfonate on Mycobacterium tuberculosis in vitro. Tuberculosis 95:440–446

    PubMed  Google Scholar 

  228. van der Paardt A-F, Wilffert B, Akkerman OW, de Lange WC, van Soolingen D, Sinha B, van der Werf TS, Kosterink JG, Alffenaar J-WC (2015) Evaluation of macrolides for possible use against multidrug-resistant Mycobacterium tuberculosis. Eur Respir J 46:444–455

    PubMed  Google Scholar 

  229. Van der Paardt A-FL, Akkerman OW, Gualano G, Palmieri F, Davies Forsman L, Aleksa A, Tiberi S, de Lange WCM, Bolhuis MS, Skrahina A, van Soolingen D, Kosterink JGW, Migliori GB, van der Werf TS, Alffenaar J-Willem C (2017) Safety and tolerability of clarithromycin in the treatment of multidrug-resistant tuberculosis. Eur Respir J 49:1601612

    PubMed  Google Scholar 

  230. Vilaplana C, Marzo E, Tapia G, Diaz J, Garcia V, Cardona P-J (2013) Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J Infect Dis 208:199–202

    CAS  PubMed  Google Scholar 

  231. Walker NF, Clark SO, Oni T, Andreu N, Tezera L, Singh S, Saraiva L, Pedersen B, Kelly DL, Tree JA, D’Armiento JM, Meintjes G, Mauri FA, Williams A, Wilkinson RJ, Friedland JS, Elkington PT (2012) Doxycycline and HIV infection suppress tuberculosis-induced matrix metalloproteinases. Am J Respir Crit Care Med 185:989–997

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Walker NF, Stek C, Wasserman S, Wilkinson RJ, Meintjes G (2018) The tuberculosis-associated immune reconstitution inflammatory syndrome: recent advances in clinical and pathogenesis research. Curr Opin HIV AIDS 13:512–521

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Wallis RS, Maeurer M, Mwaba P, Chakaya J, Rustomjee R, Migliori GB, Marais B, Schito M, Churchyard G, Swaminathan S, Hoelscher M, Zumla A (2016) Tuberculosis—advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers. Lancet Infect Dis 16:e34–e46

    CAS  PubMed  Google Scholar 

  234. Wang Q, Xu Y, Gu Z, Liu N, Jin K, Li Y, Crabbe MJC, Zhong Y (2018) Identification of new antibacterial targets in RNA polymerase of Mycobacterium tuberculosis by detecting positive selection sites. Comput Biol Chem 73:25–30

    CAS  PubMed  Google Scholar 

  235. Weiner M, Gelfond J, Johnson-Pais TL, Engle M, Peloquin CA, Johnson JL, Sizemore EE, Mac Kenzie WR (2018) Elevated plasma moxifloxacin concentrations and SLCO1B1 g.-11187G: A polymorphism in adults with pulmonary tuberculosis. Antimicrob Agents Chemother 62:e01802–e01817

    CAS  PubMed  PubMed Central  Google Scholar 

  236. WHO (2014) The use of delamanid in the treatment of multidrug-resistant tuberculosis interim policy guidance. World Health Organization https://www.who.int/tb/publications/delamanid-in-mdr-tb-treatment/en/. Accessed Jan 2020

  237. WHO (2015) New additions to the WHO Essential Medicines List related to TB treatment. World Health Organisation https://www.who.int/tb/features_archive/essential_medicines_2015/en/. Accessed Jan 2020

  238. WHO (2018) Global tuberculosis report 2018. World Health Organisation. World Health Organisation. https://wwww.hoint/tb/publications/global_report/en/. Accessed Jan 2020

  239. WHO (2019) WHO model list of essential medicines World Health Organisation https://apps.who.int/iris/bitstream/handle/10665/325771/WHO-MVP-EMP-IAU-201906-eng.pdf?ua=1. Accessed Jan 2020

  240. Xu J, Lu Y, Fu L, Zhu H, Wang B, Mdluli K, Upton AM, Jin H, Zheng M, Zhao W, Li P (2012) In vitro and in vivo activity of clofazimine against Mycobacterium tuberculosis persisters. Int J Tuberc Lung Dis 16:1119–1125

    CAS  PubMed  Google Scholar 

  241. Xu J, Tasneen R, Peloquin CA, Almeida DV, Li S-Y, Barnes-Boyle K, Lu Y, Nuermberger E (2017a) Verapamil increases the bioavailability and efficacy of bedaquiline but not clofazimine in a murine model of tuberculosis. Antimicrob Agents Chemother 62:e01692–e01617

    PubMed  PubMed Central  Google Scholar 

  242. Xu Z, Zhang S, Gao C, Fan J, Zhao F, Lv Z-S, Feng L-S (2017b) Isatin hybrids and their anti-tuberculosis activity. Chin Chem Lett 28:159–167

    CAS  Google Scholar 

  243. Xu Z, Zhao S-J, Lv Z-S, Gao F, Wang Y, Zhang F, Bai L, Deng J-L (2019) Fluoroquinolone-isatin hybrids and their biological activities. Eur J Med Chem 162:396–406

    CAS  PubMed  Google Scholar 

  244. Yang X, Wedajo W, Yamada Y, Dahlroth S-L, Neo JJ-L, Dick T, Chui W-K (2018) 1, 3, 5-triazaspiro [5.5] undeca-2, 4-dienes as selective Mycobacterium tuberculosis dihydrofolate reductase inhibitors with potent whole cell activity. Eur J Med Chem 144:262–276

    CAS  PubMed  Google Scholar 

  245. Yates TA, Tomlinson LA, Bhaskaran K, Langan S, Thomas S, Smeeth L, Douglas IJ (2017) Lansoprazole use and tuberculosis incidence in the United Kingdom clinical practice research datalink: A population based cohort. PLoS Med 14:e1002457

    PubMed  PubMed Central  Google Scholar 

  246. Zhang W, Lun S, Wang S-H, Jiang X-W, Yang F, Tang J, Manson AL, Earl AM, Gunosewoyo H, Bishai WR (2018) Identification of novel coumestan derivatives as polyketide synthase 13 inhibitors against Mycobacterium tuberculosis. J Med Chem 61:791–803

    CAS  PubMed  Google Scholar 

  247. Zong Z, Jing W, Shi J, Sa W, Zhang T, Huo F, Shang Y, Liang Q, Huang H, Pang Y (2018) Comparison of in vitro activity and mic distributions between the novel oxazolidinone delpazolid and linezolid against multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis in china. Antimicrob Agents Chemother 62:e00165–e00118

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Zumla A, Maeurer M, Host-Directed Therapies Network C (2015) Host-directed therapies for tackling multi-drug resistant tuberculosis: Learning from the pasteur-bechamp debates. Clin Infect Dis 61:1432–1438

    CAS  PubMed  Google Scholar 

  249. Zumla AI, Gillespie SH, Hoelscher M, Philips PP, Cole ST, Abubakar I, McHugh TD, Schito M, Maeurer M, Nunn AJ (2014) New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infect Dis 14:327–340

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The first author appreciates North-West University for Post-Doctoral fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Du Toit Loots.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies involving human participants or animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adeniji, A.A., Knoll, K.E. & Loots, D.T. Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus. Appl Microbiol Biotechnol 104, 5633–5662 (2020). https://doi.org/10.1007/s00253-020-10606-y

Download citation

Keywords

  • Adjunct drugs
  • Anti-tuberculosis therapy
  • Drug resistance
  • Monotherapy
  • Mycobacterium tuberculosis
  • Prodrugs