Skip to main content

Novel unexpected functions of PHA granules

Abstract

Polyhydroxyalkanoates (PHA), polyesters accumulated by numerous prokaryotes in the form of intracellular granules, have been for decades considered being predominantly storage molecules. However, numerous recent discoveries revealed and emphasized their complex biological role for microbial cells. Most of all, it was repeatedly reported and confirmed that the presence of PHA granules in prokaryotic cells enhances stress resistance and robustness of microbes against various environmental stress factors such as high or low temperature, freezing, oxidative, and osmotic pressure. It seems that protective mechanisms of PHA granules are associated with their extraordinary architecture and biophysical properties as well as with the complex and deeply interconnected nature of PHA metabolism. Therefore, this review aims at describing novel and unexpected properties of PHA granules with respect to their contribution to stress tolerance of various prokaryotes including common mesophilic heterotrophic bacteria, but also extremophiles or photo-autotrophic cyanobacteria.

Key points

PHA granules present in bacterial cells reveal unique properties and functions.

PHA enhances stress robustness of bacterial cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Amor SR, Rayment T, Sanders JKM (1991) Poly (hydroxybutyrate) in vivo: NMR and x-ray characterization of the elastomeric state. Macromolecules 24(16):4583–4588. https://doi.org/10.1021/ma00016a017

    CAS  Article  Google Scholar 

  2. Ansari S, Fatma T (2016) Cyanobacterial polyhydroxybutyrate (PHB): screening, optimization and characterization. PLoS One 11(6):1–20. https://doi.org/10.1371/journal.pone.0158168

    CAS  Article  Google Scholar 

  3. Asada Y, Miyake M, Miyake J, Kurane R, Tokiwa Y (1999) Photosynthetic accumulation of poly-(hydroxybutyrate) by cyanobacteria—the metabolism and potential for CO2 recycling. Int J Biol Macromol 25:37–42. https://doi.org/10.1016/S0141-8130(99)00013-6

    CAS  Article  PubMed  Google Scholar 

  4. Ayub ND, Tribelli PM, López NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13(1):59–66. https://doi.org/10.1007/s00792-008-0197-z

    CAS  Article  PubMed  Google Scholar 

  5. Bair HE, Johnson GE, Anderson EW, Matsuoka S (1981) Non equilibrium annealing behavior of poly (vinyl acetate). Polym Eng Sci 21(14):930–935. https://doi.org/10.1002/pen.760211410

    CAS  Article  Google Scholar 

  6. Barnard GN, Sanders JKM (1988) Observation of mobile poly (β-hydroxybutyrate) in the storage granules of Methylobacterium AM1 by in vivo 13C-NMR spectroscopy. FEBS Lett 231(1):16–18. https://doi.org/10.1016/0014-5793(88)80693-8

  7. Barnard GN, Sanders JKM (1989) The poly-beta-hydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. J Biol Chem 264(6):3286–3291

  8. Batista MB, Teixeira CS, Sfeir MZT, Alves LPS, Valdameri G, Pedrosa FO, Sassaki GL, Steffens MBR, de Souza EM, Dixon R, Müller-Santos M (2018) PHB biosynthesis counteracts redox stress in Herbaspirillum seropedicae. Front Microbiol 9:472. https://doi.org/10.3389/fmicb.2018.00472

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bergersen FJ, Peoples MB, Turner GL (1991) A role for poly-(beta)-hydroxybutyrate in bacteroids of soybean root nodules. Proc R Soc London B 245:59–64. https://doi.org/10.1098/rspb.1991.0088

    CAS  Article  Google Scholar 

  10. Bhaya D, Schwarz R, Grossman AR (2000) Molecular responses to environmental stress. In: Whitton BA, Potts MK (eds) The ecology of Cyanobacteria: their diversity in time and space. Academic Publishers, New York. https://doi.org/10.1007/0-306-46855-7

    Chapter  Google Scholar 

  11. Bonthrone KM, Clauss J, Horowitz DM, Hunter BK, Sanders JKM (1992) The biological and physical chemistry of polyhydroxyalkanoates as seen by NMR spectroscopy. FEMS Microbiol Rev 9(2–4):269–277. https://doi.org/10.1016/0378-1097(92)90320-N

    Article  Google Scholar 

  12. Breedveld MW, Dijkema C, Zevenhuizen LPTM, Zehnder AJB (1993) Response of intracellular carbohydrates to a NaCl shock in Rhizobium leguminosarum biovar trifolii TA-1 and Rhizobium meliloti SU-47. J Gen Microbiol 139:3157–3163. https://doi.org/10.1099/00221287-139-12-3157

    CAS  Article  Google Scholar 

  13. Bresan S, Sznajder A, Hauf W, Forchhammer K, Pfeiffer D, Jendrossek D (2016) Polyhydroxyalkanoate (PHA) granules have no phospholipids. Sci Rep 6:26612. https://doi.org/10.1038/srep26612

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Ceccorulli G, Pizzoli M, Scandola M (1992) Plasticization of bacterial poly (3-hydroxybutyrate). Macromolecules 25(12):3304–3306. https://doi.org/10.1021/ma00038a045

    CAS  Article  Google Scholar 

  15. Chien C-C, Wang L-J, Lin W-R (2014) Polyhydroxybutyrate accumulation by a cadmium-resistant strain of Cupriavidus taiwanensis. J Taiwan Instit Chem Eng 45:1164–1169. https://doi.org/10.1016/j.jtice.2014.02.004

    CAS  Article  Google Scholar 

  16. Ciesielski S, Górniak D, Możejko J, Świątecki A, Grzesiak J, Zdanowski M (2014) The diversity of bacteria isolated from Antarctic freshwater reservoirs possessing the ability to produce Polyhydroxyalkanoates. Curr Microbiol 69:594–603. https://doi.org/10.1007/s00284-014-0629-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. De Koning GJM, Lemstra PJ (1992) The amorphous state of bacterial poly [(R)-3-hydroxyalkanoate] in vivo. Polymer 33(15):3292–3294. https://doi.org/10.1016/0032-3861(92)90249-V

    Article  Google Scholar 

  18. Doi Y, Shiro K, Hideki A (1995) Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28(14):4822–4828. https://doi.org/10.1021/ma00118a007

    CAS  Article  Google Scholar 

  19. Ellar D, Lundgren DG, Okamura K, Marchessault RH (1968) Morphology of poly-β-hydroxybutyrate granules. J Mol Biol 35(3):489–502. https://doi.org/10.1016/S0022-2836(68)80009-9

    CAS  Article  PubMed  Google Scholar 

  20. Encarnación S, del Carmen VM, Dunn MF, Dávalos A, Mendoza G, Mora Y, Mora J (2002) AniA regulates reserve polymer accumulation and global protein expression in Rhizobium etli. J Bacteriol 184:2287–2295. https://doi.org/10.1128/jb.184.8.2287-2295.2002

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fuller CR, O’Donnell JP, Saulnier J, Redlinger TE, Foster J, Lenz RW (1992) The supramolecular architecture of the polyhydroxyalkanoate inclusions in Pseudomonas oleovorans. FEMS Microbiol Rev 9(2–4):279–288. https://doi.org/10.1016/0378-1097(92)90321-E

    Article  Google Scholar 

  22. Gebauer B, Jendrossek D (2006) Assay of poly (3-hydroxybutyrate) depolymerase activity and product determination. Appl Environ Microbiol 72(9):6094–6100. https://doi.org/10.1128/AEM.01184-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Goh YS, Tan IKP (2012) Polyhydroxyalkanoate production by antarctic soil bacteria isolated from Casey Station and Signy Island. Microbiol Res 167:211–219. https://doi.org/10.1016/j.micres.2011.08.002

    CAS  Article  PubMed  Google Scholar 

  24. Goh L-K, Purama RK, Sudesh K (2014) Enhancement of stress tolerance in the polyhydroxyalkanoate producers without mobilization of the accumulated granules. Appl Biochem Biotechnol 172:1585–1598. https://doi.org/10.1007/s12010-013-0634-z

    CAS  Article  PubMed  Google Scholar 

  25. Haas C, El-Najjar T, Virgolini N, Smerilli M, Neureiter M (2017) High cell-density production of poly(3-hydroxybutyrate) in a membrane bioreactor. New Biotechnol 37:117–122. https://doi.org/10.1016/j.nbt.2016.06.1461

    CAS  Article  Google Scholar 

  26. Harrison STL, Chase HA, Amor SR, Bonthrone KM, Sanders JKM (1992) Plasticization of poly (hydroxybutyrate) in vivo. Int J Biol Macromol 14(1):50–56. https://doi.org/10.1016/S0141-8130(05)80020-0

    CAS  Article  PubMed  Google Scholar 

  27. Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G (2013, 2013) Archaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-products. Archaea. https://doi.org/10.1155/2013/129268

  28. Horowitz DM, Sanders JKM (1994) Amorphous, biomimetic granules of polyhydroxybutyrate: preparation, characterization, and biological implications. J Am Chem Soc 116(7):2695–2702. https://doi.org/10.1021/ja00086a001

    CAS  Article  Google Scholar 

  29. Horowitz DM, Sanders JKM (1995) Biomimetic, amorphous granules of polyhydroxyalkanoates: composition, mobility, and stabilization in vitro by proteins. Can J Microbiol 41(13):115–123. https://doi.org/10.1139/m95-177

    CAS  Article  Google Scholar 

  30. Horowitz DM, Clauss J, Hunter BK, Sanders JKM (1993) Amorphous polymer granules. Nature 363:23–23. https://doi.org/10.1038/363023a0

    CAS  Article  Google Scholar 

  31. Ibrahim MH, Steinbüchel A (2010) High-cell-density cyclic fed-batch fermentation of a poly (3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl Environ Microbiol 76(23):7890–7895. https://doi.org/10.1128/AEM.01488-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Ibrahim MHA, Willems A, Steinbüchel A (2010) Isolation and characterization of new poly(3HB)-accumulating star-shaped cell-aggregates-forming thermophilic bacteria. J Appl Microbiol 109(5):1579–1590. https://doi.org/10.1111/j.1365-2672.2010.04786.x

    CAS  Article  PubMed  Google Scholar 

  33. Jendrossek D (2005) Fluorescence microscopical investigation of poly (3-hydroxybutyrate) granule formation in bacteria. Biomacromolecules 6(2):598–603. https://doi.org/10.1021/bm049441r

    CAS  Article  PubMed  Google Scholar 

  34. Jendrossek D (2007) Peculiarities of PHA granules preparation and PHA depolymerase activity determination. Appl Microbiol Biotechnol 74(6):1186–1196. https://doi.org/10.1007/s00253-007-0860-9

    CAS  Article  PubMed  Google Scholar 

  35. Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191(10):3195–3202. https://doi.org/10.1128/JB.01723-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly (3-hydroxybutyrate). Environ Microbiol 16(8):2357–2373. https://doi.org/10.1111/1462-2920.12356

    CAS  Article  PubMed  Google Scholar 

  37. Jendrossek D, Selchow O, Hoppert M (2007) Poly (3-hydroxybutyrate) granules at the early stages of formation are localized close to the cytoplasmic membrane in Caryophanon latum. Appl Environ Microbiol 73(2):586–593. https://doi.org/10.1128/AEM.01839-06

  38. Kaartokallio H, Søgaard DH, Norman L, Rysgaard S, Tison JL, Delille B, Thomas DN (2013) Short-term variability in bacterial abundance, cell properties, and incorporation of leucine and thymidine in subarctic sea ice. Aquat Microb Ecol 71:57–73. https://doi.org/10.3354/ame01667

    Article  Google Scholar 

  39. Kadouri D, Burdman S, Jurkevitch E, Okon Y (2002) Identification and isolation of genes involved in poly(β-hydroxybutyrate) biosynthesis in Azospirillum brasilense and characterization of a phbC mutant. Appl Environ Microbiol 68:2943–2949. https://doi.org/10.1128/AEM.68.6.2943-2949.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Kadouri D, Jurkevitch E, Okon Y (2003a) Involvement of the reserve material poly-beta-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl Environ Microbiol 69:3244–3250. https://doi.org/10.1128/AEM.69.6.3244-3250.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Kadouri D, Jurkevitch E, Okon Y (2003b) Poly beta-hydroxybutyrate depolymerase (PhaZ) in Azospirillum brasilense and characterization of a phaZ mutant. Arch Microbiol 180:309–318. https://doi.org/10.1007/s00203-003-0590-z

    CAS  Article  PubMed  Google Scholar 

  42. Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31(2):55–67. https://doi.org/10.1080/10408410590899228

    CAS  Article  PubMed  Google Scholar 

  43. Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Polissiou, Gardiner PHE (2005) Effects of heavy metals on plant-associated rhizobacteria: Comparison of endophytic and non-endophytic strains of Azospirillum brasilense. J Trace Elem Med Biol 19:91–95. https://doi.org/10.1016/j.jtemb.2005.03.002

  44. Kessler B, Witholt B (2001) Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol 86(2):97–104. https://doi.org/10.1016/S0168-1656(00)00404-1Get

    CAS  Article  PubMed  Google Scholar 

  45. Khetkorn W, Incharoensakdi A, Lindblad P (2016) Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. Bioresour Technol 214:761–768. https://doi.org/10.1016/j.biortech.2016.05.014

    CAS  Article  PubMed  Google Scholar 

  46. Kim DY, Hyung WK, Moon GC, Young HR (2007) Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 45(2):87–97

    PubMed  Google Scholar 

  47. Koch M, Doello S, Gutekunst K, Forchhammer K (2019) PHB is produced from glycogen turn-over during nitrogen starvation in Synechocystis sp. PCC 6803. Int J Mol Sci 20(8):1942. https://doi.org/10.3390/ijms20081942

    CAS  Article  PubMed Central  Google Scholar 

  48. Koller M, Marsalek L, de Sousa Dias MM, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyester in a sustainable manner. New Biotechnol 37:24–38. https://doi.org/10.1016/j.nbt.2016.05.001

    CAS  Article  Google Scholar 

  49. Koller M, Obruca S, Pernicova I, Braunegg G (2018) Physiological, kinetic, and process engineering aspects of polyhydroxyalkanoate biosynthesis by extremophiles. In: Williams H, Kelly P (eds) Polyhydroxyalkanoates: Biosynthesis, Chemical Structures and Applications. Nova Science Publishers Inc., pp 1–70

  50. Koskimäki JJ, Kajula M, Hokkanen J, Ihantola EL, Kim JH, Hautajärvi H, Hankala E, Soukas M, Pohjanen J, Podolich O, Kozyrovska N, Turpeinen A, Pääkkönen M, Mattila S, Campbell BC, Pirttilä AM (2016) Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals. Nat Chem Biol 12(5):332–338. https://doi.org/10.1038/nchembio.2043

    CAS  Article  PubMed  Google Scholar 

  51. Kumar V, Thakur VA, Kumar S, Singh D (2018) Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba trans-Himalayan region. FEMS Microbiol Lett 365:14, art. no. fny144. https://doi.org/10.1093/femsle/fny144

    CAS  Article  Google Scholar 

  52. Lauzier C, Revol J-F, Marchessault RH (1992a) Topotactic crystallization of isolated poly (β-hydroxybutyrate) granules from Alcaligenes eutrophus. FEMS Microbiol Rev 9(2–4):299–310. https://doi.org/10.1016/0378-1097

    Article  Google Scholar 

  53. Lauzier C, Marchessault RH, Smith P, Chanzy H (1992b) Structural study of isolated poly (β-hydroxybutyrate) granules. Polymer 33(4):823–827. https://doi.org/10.1016/0032-3861(92)90343-U

    CAS  Article  Google Scholar 

  54. Martin DD, Bartlett DH, Roberts MF (2002) Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles 6:507–514. https://doi.org/10.1007/s00792-002-0288-1

    CAS  Article  PubMed  Google Scholar 

  55. Masojidek J, Prasil O (2010) The development of microalgal biotechnology in the Czech Republic. J Ind Microbiol Biotechnol 37(12):1307–1317. https://doi.org/10.1007/s10295-010-0802-x

    CAS  Article  PubMed  Google Scholar 

  56. McArthur JV (2006) Microbial ecology: an evolutionary approach. Elsevier Acad Press, Amsterdam. https://doi.org/10.1093/plankt/fbl013

    Book  Google Scholar 

  57. Meixner K (2018) Integrating cyanobacterial poly(3-hydroxybutyrate) production into biorefinery concepts. Disertation, University of Natural Resources and Life Sciences, Vienna

  58. Meixner K, Fritz I, Daffert C, Markl K, Fuchs W, Drosg B (2016) Processing recommendations for using low-solids digestate as nutrient solution for poly-ß-hydroxybutyrate production with Synechocystis salina. J Biotechnol 240:61–67. https://doi.org/10.1016/j.jbiotec.2016.10.023

    CAS  Article  PubMed  Google Scholar 

  59. Merrick JM, Doudoroff M (1964) Depolymerization of poly-β-hydroxybutyrate by an intracellular enzyme system. J Bacteriol 88(1):60–71

    CAS  Article  Google Scholar 

  60. Merrick JM, Lundgren DG, Pfister RM (1965) Morphological changes in poly-β-hydroxybutyrate granules associated with decreased susceptibility to enzymatic hydrolysis. J Bacteriol 89(1):234–239

    CAS  Article  Google Scholar 

  61. Merrick JM, Steger R, Dombroski D (1999) Hydrolysis of native poly (hydroxybutyrate) granules (PHB), crystalline PHB, and artificial amorphous PHB granules by intracellular and extracellular depolymerases. Int J Biol Macromol 25(1–3):129–134. https://doi.org/10.1016/s0141-8130(99)00026-4

    CAS  Article  PubMed  Google Scholar 

  62. Mezzina MP, Álvarez DS, Egoburo DE, Peña RD, Nikel PI, Pettinari MJ (2017) A new player in the biorefineries field: phasin PhaP enhances tolerance to solvents and boosts ethanol and 1, 3-propanediol synthesis in Escherichia coli. Appl Environ Microbiol 83(14):e00662–e00617. https://doi.org/10.1128/AEM.00662-17

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Mitsui A, Kumazawa S, Takahashi A, Ikemoto HH, Cao S, Arai T (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323:720–722. https://doi.org/10.1038/323720a0

    CAS  Article  Google Scholar 

  64. Mumtaz T, Suraini AA, Rahman NAA, Yee PL, Wasoh H, Shirai Y, Hassan MA (2011) Visualization of core-shell PHBV granules of wild type Comamonas sp. EB172 in vivo under transmission electron microscope. Int J Polym Anal Charact 16(4):228–238. https://doi.org/10.1080/1023666X.2011.569990

  65. Nowroth V, Marquart L, Jendrossek D (2016) Low temperature-induced viable but not culturable state of Ralstonia eutropha and its relationship to accumulated polyhydroxybutyrate. FEMS Microbiol Lett 363:fnw249. https://doi.org/10.1093/femsle/fnw249

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Obruca S, Sedlacek P, Mravec F, Samek O, Marova I (2016a) Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 100(3):1365–1376. https://doi.org/10.1007/s00253-015-7162-4

    CAS  Article  PubMed  Google Scholar 

  67. Obruca S, Sedlacek P, Krzyzanek V, Mravec F, Hrubanova K, Samek O, Kucera D, Benesova P, Marova I (2016b) Accumulation of poly (3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS One 11(6):e0157778. https://doi.org/10.1371/journal.pone.0157778

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Obruca S, Sedlacek P, Mravec F, Krzyzanek V, Nebesarova J, Samek O, Kucera D, Benesova P, Hrubakova K, Milerova M, Marova I (2017) The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol 39:68–80. https://doi.org/10.1016/j.nbt.2017.07.008

    CAS  Article  Google Scholar 

  69. Panda B, Sharma L, Mallick N (2005) Poly-β-hydroxybutyrate accumulation in Nostoc muscorum and Spirulina platensis under phosphate limitation. J Plant Physiol 162(12):1376–1379. https://doi.org/10.1016/j.jplph.2005.05.002

    CAS  Article  PubMed  Google Scholar 

  70. Panuschka S, Drosg B, Ellersdorfer M, Meixner K, Fritz I (2019) Photoautotrophic production of poly-hydroxybutyrate – first detailed cost estimations. Algal Res 41:101558. https://doi.org/10.1016/j.algal.2019.101558

    Article  Google Scholar 

  71. Pärnänen K, Karkman A, Virta M, Eronen-Rasimus E, Kaartokallio H (2015) Discovery of bacterial polyhydroxyalkanoate synthase (PhaC)-encoding genes from seasonal Baltic Sea ice and cold estuarine waters. Extremophiles 19:197–206. https://doi.org/10.1007/s00792-014-0699-9

    CAS  Article  PubMed  Google Scholar 

  72. Pavez P, Castillo JL, González C, Martínez M (2009) Poly-β-hydroxyalkanoate exert a protective effect against carbon starvation and frozen conditions in Sphingopyxis chilensis. Curr Microbiol 59:636–640. https://doi.org/10.1007/s00284-009-9485-9

    CAS  Article  PubMed  Google Scholar 

  73. Peplinski K, Ehrenreich A, Doring C, Bomeke M, Reinecke F, Hutmacher C, Steinbuchel A (2010) Genome-wide transcriptome analyses of the “Knallgas” bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiol 156(7):2136–2152. https://doi.org/10.1099/mic.0.038380-0

    CAS  Article  Google Scholar 

  74. Pernicova I, Novackova I, Sedlacek P, Kourilova X, Koller M, Obruca S (2020) Application of osmotic challenge for enrichment of microbial consortia in polyhydroxyalkanoates producing thermophilic and thermotolerant bacteria and their subsequent isolation. Int J Biol Macromol 144:698–704. https://doi.org/10.1016/j.ijbiomac.2019.12.128

    CAS  Article  PubMed  Google Scholar 

  75. Pfeiffer D, Jendrossek D (2014) PhaM is the physiological activator of poly (3-hydroxybutyrate)(PHB) synthase (PhaC1) in Ralstonia eutropha. Appl Environ Microbiol 80(2):555–563. https://doi.org/10.1128/AEM.02935-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Pham TH (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413. https://doi.org/10.1099/mic.0.27357-0

    CAS  Article  PubMed  Google Scholar 

  77. Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256(5056):520–523. https://doi.org/10.1126/science.256.5056.520

    CAS  Article  PubMed  Google Scholar 

  78. Porter M, Jian Y (2011a) Crystallization kinetics of poly (3-hydroxybutyrate) granules in different environmental conditions. J Biomat Nanobiotechnol 2(03):301. https://doi.org/10.4236/jbnb.2011.23037

    CAS  Article  Google Scholar 

  79. Porter M, Jian Y (2011b) Monitoring the in situ crystallization of native biopolyester granules in Ralstonia eutropha via infrared spectroscopy. J Microbiol Methods 87(1):49–55. https://doi.org/10.1016/j.mimet.2011.07.009

    CAS  Article  PubMed  Google Scholar 

  80. Pötter M, Steinbüchel A (2006) Biogenesis and structure of polyhydroxyalkanoate granules. In: Shively JM (ed) Inclusions in prokaryotes. Microbiology Monographs vol 1. Springer, Berlin. https://doi.org/10.1007/3-540-33774-1_5

    Chapter  Google Scholar 

  81. Pötter M, Madkour MH, Mayer F, Steinbüchel A (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148(8):2413–2426. https://doi.org/10.1099/00221287-148-8-2413

    Article  PubMed  Google Scholar 

  82. Prieto A, Escapa IF, Martínez V, Dinjaski N, Herencias C, de la Peña F, Tarazona N, Revelles O (2016) A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida. Environ Microbiol 18(2):341–357. https://doi.org/10.1111/1462-2920.12760

    CAS  Article  PubMed  Google Scholar 

  83. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293. https://doi.org/10.1007/s002530100702

    CAS  Article  PubMed  Google Scholar 

  84. Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376(1):15–33. https://doi.org/10.1042/bj20031254

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Rehm BH, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25(1–3):3–19. https://doi.org/10.1016/s0141-8130(99)00010-0

    CAS  Article  PubMed  Google Scholar 

  86. Remsen CC (1966) The fine structure of frozen-etched Bacillus cereus spores. Arch Mikrobiol 54(3):266–275. https://doi.org/10.1007/BF00408999

    CAS  Article  PubMed  Google Scholar 

  87. Rothermic MM, Guerrero R, Lenz RW, Goodwin S (2000) Characterization, seasonal occurrence, and diel fluctuation of poly(hydroxyalkanoate) in photosynthetic microbial mats. Appl Environ Microbiol 66:4279–4291. https://doi.org/10.1128/AEM.66.10.4279-4291.2000

    Article  Google Scholar 

  88. Ruiz JA, Lopez NI, Fernandez RO, Mendez BS (2001) Polyhydroxyalkanoate degradation is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural water microcosms. Appl Environ Microbiol 67:225–230. https://doi.org/10.1128/AEM.67.1.225-230.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Saponetti MS, Bobba F, Salerno G, Scarfato A, Corcelli A, Cucoclo A (2011) Morphological and structural aspects of the extremely halophilic archaeon Haloquadratum walsbyi. PLoS One 6(4):e18653. https://doi.org/10.1371/journal.pone.0018653

    CAS  Article  Google Scholar 

  90. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170(12):5837–5847. https://doi.org/10.1128/jb.170.12.5837-5847.1988

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Sedlacek P, Slaninova E, Enev V, Koller M, Nebesarova J, Marova I, Hrubanova K, Krzyzanek V, Samek O, Obruca S (2019a) What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl Microbiol Biotechnol 103(4):1905–1917. https://doi.org/10.1007/s00253-018-09584-z

    CAS  Article  PubMed  Google Scholar 

  92. Sedlacek P, Slaninova E, Koller M, Nebesarova J, Marova I, Krzyzanek V, Obruca S (2019b) PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. New Biotechnol 49:129–136. https://doi.org/10.1016/j.nbt.2018.10.005

    CAS  Article  Google Scholar 

  93. Silvestrini L, Drosg B, Fritz I (2016) Identification of four polyhydroxyalkanoate structural genes in Synechocystis cf. salina PCC6909: in silico evidences. J Proteomics Bioinform 9(2):28–37. https://doi.org/10.4172/jpb.1000386

    CAS  Article  Google Scholar 

  94. Slaninova E, Sedlacek P, Mravec F, Mullerova L, Samek O, Koller M, Hesko O, Kucera D, Marova I, Obruca S (2018) Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl Microbiol Biotechnol 102(4):1923–1931. https://doi.org/10.1007/s00253-018-8760-8

    CAS  Article  PubMed  Google Scholar 

  95. Slepecky RA, Law JH (1961) Synthesis and degradation of poly-β-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J Bacteriol 82:37–42. https://doi.org/10.1128/JB.82.1.37-42.1961

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Smith EG (1976) Pulsed NMR studies of molecular motion in wet nylon-6, 6 fibres. Polymer 17(9):761–767. https://doi.org/10.1016/0032-3861(76)90030-6

    CAS  Article  Google Scholar 

  97. Soto G, Setten L, Lisi C, Maurelis C, Mozzicafreddo M, Cuccioloni M, Angeletti M, Ayub ND (2012) Hydroxybutyrate prevents protein aggregation in the halotolerant bacterium Pseudomonas sp. CT13 under abiotic stress. Extremophiles 16:455–462. https://doi.org/10.1007/s00792-012-0445-0

    CAS  Article  PubMed  Google Scholar 

  98. Stal LJ (2012) Cyanobacterial mats and stromatolites. In: Whitton BA (ed) Ecology of cyanobacteria II. Springer, Dordrecht, pp 65–125

    Chapter  Google Scholar 

  99. Stanley SM (1999) Earth system history. Freeman, New York

    Google Scholar 

  100. Stuart ES, Foster LJR, Lenz RW, Fuller RC (1996) Intracellular depolymerase functionality and location in Pseudomonas olevorans inclusions containing polyhydroxyoctanoate. Int J Biol Macromol 19:171–176. https://doi.org/10.1016/0141-8130(96)01124-5

    CAS  Article  PubMed  Google Scholar 

  101. Stubbe JA, Tian J (2003) Polyhydroxyalkanoate (PHA) homeostasis: the role of the PHA synthase. Nat Prod Rep 20(5):445–457. https://doi.org/10.1039/B209687K

    CAS  Article  PubMed  Google Scholar 

  102. Sudesh K, Abe H, Doi Y (2000a) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci (Oxford) 25(10):1503–1555. https://doi.org/10.1016/S0079-6700(00)00035-6

    CAS  Article  Google Scholar 

  103. Sudesh K, Fukui T, Iwata T, Doi Y (2000b) Factors affecting the freeze-fracture morphology of in vivo polyhydroxyalkanoate granules. Can J Microbiol 46(4):304–311. https://doi.org/10.1139/w99-150

    CAS  Article  PubMed  Google Scholar 

  104. Sudesh K, Taguchi K, Doi Y (2001) Can cyanobacteria be a potential PHA producer? RIKEN Review 42:75–76

    CAS  Google Scholar 

  105. Tal S, Okon Y (1985) Production of the reserve material poly-β-hydroxybutyrate and its function in Azospirillum brasilense Cd. Can J Microbiol 31:608–613. https://doi.org/10.1139/m85-115

    CAS  Article  Google Scholar 

  106. Taroncher-Oldenburg G, Nishina K, Stephanopoulos G (2000) Identification and analysis of the polyhydroxyalkanoate-specific ß-ketothiolase and acetoacetyl coenzymeA reductase genes in the cyanobacterium Synechocystis sp. strain PCC6803. Appl Environ Microbiol 66(10):4440–4448. https://doi.org/10.1128/aem.66.10.4440-4448.2000

  107. Tian J, Sinskey AJ, Stubbe J (2005) Kinetic studies of polyhydroxybutyrate granule formation in Wautersia eutropha H16 by transmission electron microscopy. J Bacteriol 187(11):3814–3824. https://doi.org/10.1128/JB.187.11.3814-3824.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Tribelli PM, López NI (2011) Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions. Extremophiles 15:541–547. https://doi.org/10.1007/s00792-011-0384-1

    CAS  Article  PubMed  Google Scholar 

  109. Tribelli PM, Pezzoni M, Brito MG, Montesinos NV, Costa CS, Lopez NI (2019) Response to lethal UVA radiation in the Antarctic bacterium Pseudomonas extremaustralis: polyhydroxybutyrate and cold adaptation as protective factors. Extremophiles 24:1–11. https://doi.org/10.1007/s00792-019-01152-1

    Article  Google Scholar 

  110. Troschl C, Meixner K, Drosg B (2017) Cyanobacterial PHA production-review of recent advances and a summary of three years’ working experience running a pilot plant. Bioengineering (Basel) 4(2):26. https://doi.org/10.3390/bioengineering4020026

    CAS  Article  Google Scholar 

  111. Urmeneta J, Mas-Castella J, Guerrero R (1995) Biodegradation of poly-(beta)-hydroxyalkanoates in a lake sediment sample increases bacterial sulfate reduction. Appl Environ Microb 61:2046–2048. https://doi.org/10.1128/AEM.61.5.2046-2048.1995

    CAS  Article  Google Scholar 

  112. van Gool AP, Lambert R, Laudelout H (1969) The fine structure of frozen etched Nitrobacter cells. Arch Microbiol 69(4):281–293. https://doi.org/10.1007/BF00408570

    Article  Google Scholar 

  113. Wang Q, Yu H, Xia Y, Kang Z, Qi Q (2009) Complete PHB mobilization in Escherichia coli enhances the stress tolerance: a potential biotechnological application. Microb Cell Factories 8:47. https://doi.org/10.1186/1475-2859-8-47

    CAS  Article  Google Scholar 

  114. Wieczorek R, Pries A, Steinbüchel A, Mayer F (1995) Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol 177(9):2425–2435

    CAS  Article  Google Scholar 

  115. Wu D, He J, Gong Y, Chen D, Zhu X, Qiu N, Sun M, Li M, Yu Z (2011) Proteomic analysis reveals the strategies of Bacillus thuringiensis YBT-1520 for survival under long-term heat stress. Proteomics 11:2580–2591. https://doi.org/10.1002/pmic.201000392

    CAS  Article  PubMed  Google Scholar 

  116. Xiao N, Jiao N, Liu Y (2015) In vivo and in vitro observations of polyhydroxybutyrate granules formed by Dinoroseobacter sp. JL 1447. Int J Biol Macromol 74:467–475. https://doi.org/10.1016/j.ijbiomac.2014.11.045

    CAS  Article  PubMed  Google Scholar 

  117. Xu F, Huang S, Liu Y, Zhang Y, Chen S (2014) Comparative study on the production of poly(3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production. Appl Microbiol Biotechnol 98(9):3965–3974. https://doi.org/10.1007/s00253-014-5524-y

    CAS  Article  PubMed  Google Scholar 

  118. Yamane T (1993) Yield of poly-D(-)-3-hydroxybutyrate from various carbon sources: a theoretical study. Biotechnol Bioeng 41:165–170. https://doi.org/10.1002/bit.260410122

    CAS  Article  PubMed  Google Scholar 

  119. York GM, Junker BH, Stubbe JA, Sinskey AJ (2001a) Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. J Bacteriol 183(14):4217–4226. https://doi.org/10.1128/JB.183.14.4217-4226.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. York GM, Stubbe J, Sinskey AJ (2001b) New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J Bacteriol 183(7):2394–2397. https://doi.org/10.1128/JB.183.7.2394-2397.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. York GM, Stubbe J, Sinskey AJ (2002) The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. J Bacteriol 184(1):59–66

    CAS  Article  Google Scholar 

  122. Zhao YH, Li HM, Qin LF, Wang HH, Chen G-Q (2007) Disruption of the polyhydroxyalkanoate synthase gene in Aeromonas hydrophila reduces its survival ability under stress conditions. FEMS Microbiol Lett 276:34–41. https://doi.org/10.1111/j.1574-6968.2007.00904.x

    CAS  Article  PubMed  Google Scholar 

  123. Zhao H, Wei H, Liu X, Yao Z, Xu M, Wei D, Wang J, Wang X, Chen G-Q (2016) Structural insights on PHA binding protein PhaP from Aeromonas hydrophila. Sci Rep 6:39424. https://doi.org/10.1038/srep39424

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was partly funded by the project GA19- 19-29651L of the Czech Science Foundation (GACR) and also partly funded by the Austrian Science Fund (FWF), project I 4082-B25. Further, Zuzana Sedrlova is Brno Ph.D. Talent Scholarship Holder – funded by the Brno City Municipality.

Author information

Affiliations

Authors

Contributions

SO, PS, ES, IF, CD, KM, ZS, and MK performed literature review and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Stanislav Obruca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Obruca, S., Sedlacek, P., Slaninova, E. et al. Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol 104, 4795–4810 (2020). https://doi.org/10.1007/s00253-020-10568-1

Download citation

Keywords

  • Bacteria
  • Polyhydroxyalkanoates
  • PHA granules
  • Stress robustness
  • Cupriavidus necator
  • Extremophiles
  • Cyanobacteria