Desiccation-induced cell damage in bacteria and the relevance for inoculant production

Abstract

Plant growth–promoting bacteria show great potential for use in agriculture although efficient application remains challenging to achieve. Cells often lose viability during inoculant production and application, jeopardizing the efficacy of the inoculant. Since desiccation has been documented to be the primary stress factor affecting the decrease in survival, obtaining xerotolerance in plant growth–promoting bacteria is appealing. The molecular damage that occurs by drying bacteria has been broadly investigated, although a complete view is still lacking due to the complex nature of the process. Mechanic, structural, and metabolic changes that occur as a result of water depletion may potentially afflict lethal damage to membranes, DNA, and proteins. Bacteria respond to these harsh conditions by increasing production of exopolysaccharides, changing composition of the membrane, improving the stability of proteins, reducing oxidative stress, and repairing DNA damage. This review provides insight into the complex nature of desiccation stress in bacteria in order to facilitate strategic choices to improve survival and shelf life of newly developed inoculants.

Key Points

  • Desiccation-induced damage affects most major macromolecules in bacteria.

  • Most bacteria are not xerotolerant despite multiple endogenous adaption mechanisms.

  • Sensitivity to drying severely hampers inoculant quality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Achour M, Mtimet N, Cornelius C, Zgouli S, Mahjoub A, Thonart P, Hamdi M (2001) Application of the accelerated shelf life testing method (ASLT) to study the survival rates of freeze-dried Lactococcus starter cultures. J Chem Technol Biotechnol 76:624–628. https://doi.org/10.1002/jctb.427

    Article  CAS  Google Scholar 

  2. Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584. https://doi.org/10.1242/jeb.02179

    Article  PubMed  Google Scholar 

  3. Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47:411–414. https://doi.org/10.1016/S0006-3495(85)83932-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Aranda J, Bardina C, Beceiro A, Rumbo S, Cabral MP, Barbé J, Bou G (2011) Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. J Bacteriol 193:3740–3747. https://doi.org/10.1128/JB.00389-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Archibald FS, Fridovich I (1981) Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J Bacteriol 146:928–936

    Article  CAS  Google Scholar 

  6. Archibald FS, Fridovich I (1982) The scavenging of superoxide radical by manganous complexes: in vitro. Arch Biochem Biophys 214:452–463. https://doi.org/10.1016/0003-9861(82)90049-2

    Article  PubMed  CAS  Google Scholar 

  7. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bashan Y, de Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. https://doi.org/10.1007/s11104-013-1956-x

    Article  CAS  Google Scholar 

  9. Bednarska NG, Schymkowitz J, Rousseau F, Van Eldere J (2013) Protein aggregation in bacteria: the thin boundary between functionality and toxicity. Microbiology 159:1795–1806. https://doi.org/10.1099/mic.0.069575-0

    Article  PubMed  CAS  Google Scholar 

  10. Berninger T, González López Ó, Bejarano A, Preininger C, Sessitsch A (2018) Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb Biotechnol 11:277–301. https://doi.org/10.1111/1751-7915.12880

    Article  PubMed  CAS  Google Scholar 

  11. Billi D, Potts M (2002) Life and death of dried prokaryotes. Res Microbiol 153:7–12

    Article  CAS  Google Scholar 

  12. Boada J, Roig T, Perez X, Gamez A, Bartrons R, Cascante M, Bermúdez J (2000) Cells overexpressing fructose-2,6-bisphosphatase showed enhanced pentose phosphate pathway flux and resistance to oxidative stress. FEBS Lett 480:261–264. https://doi.org/10.1016/S0014-5793(00)01950-5

    Article  PubMed  CAS  Google Scholar 

  13. Bolen D, Baskakov IV (2001) The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol 310:955–963. https://doi.org/10.1006/jmbi.2001.4819

    Article  PubMed  CAS  Google Scholar 

  14. Boumahdi M, Hornez (1999) Influence of growth phases and desiccation on the degrees of unsaturation of fatty acids and the survival rates of rhizobia. J Appl Microbiol 87:611–619

    Article  CAS  Google Scholar 

  15. Boumahdi M, Mary P, Hornez JP (2001) Changes in fatty acid composition and degree of unsaturation of (brady)rhizobia as a response to phases of growth, reduced water activities and mild desiccation. Antonie Van Leeuwenhoek 79:73–79

    Article  CAS  Google Scholar 

  16. Bratbak G, Dundas I (1984) Bacterial dry matter content and biomass estimations. Appl Environ Microbiol 48:755–757

    Article  CAS  Google Scholar 

  17. Buitink J, van den Dries IJ, Hoekstra FA, Alberda M, Hemminga MA (2000) High critical temperature above Tg may contribute to the stability of biological systems. Biophys J 79:1119–1128. https://doi.org/10.1016/S0006-3495(00)76365-X

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Burgess CM, Gianotti A, Gruzdev N, Holah J, Knøchel S, Lehner A, Margas E, Esser SS, Sela (Saldinger) S, Tresse O (2016) The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol 221:37–53. https://doi.org/10.1016/j.ijfoodmicro.2015.12.014

    Article  PubMed  Google Scholar 

  19. Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2008) Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Biotechnol Prog 20:248–254. https://doi.org/10.1021/bp034165y

  20. Cheung MS, Klimov D, Thirumalai D (2005) Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc Natl Acad Sci 102:4753–4758. https://doi.org/10.1073/pnas.0409630102

    Article  PubMed  CAS  Google Scholar 

  21. Cho E, Choi JM, Kim H, Tahir MN, Choi Y, Jung S (2013) Ferrous iron chelating property of low-molecular weight succinoglycans isolated from Sinorhizobium meliloti. BioMetals 26:321–328. https://doi.org/10.1007/s10534-013-9615-5

    Article  PubMed  CAS  Google Scholar 

  22. Chowdhury SR, Basak RK, Sen R, Adhikari B (2011) Optimization, dynamics, and enhanced production of a free radical scavenging extracellular polysaccharide (EPS) from hydrodynamic sediment attached Bacillus megaterium RB-05. Carbohydr Polym 86:1327–1335. https://doi.org/10.1016/J.CARBPOL.2011.06.050

    Article  CAS  Google Scholar 

  23. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599. https://doi.org/10.1146/annurev.ph.54.030192.003051

    Article  PubMed  CAS  Google Scholar 

  24. Crowe LM, Reid DS, Crowe JH (1996) Is trehalose special for preserving dry biomaterials? Biophys J 71:2087–2093. https://doi.org/10.1016/S0006-3495(96)79407-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103. https://doi.org/10.1146/annurev.physiol.60.1.73

    Article  PubMed  CAS  Google Scholar 

  26. Cytryn EJ, Sangurdekar DP, Streeter JG, Franck WL, Chang W, Stacey G, Emerich DW, Joshi T, Xu D, Sadowsky MJ (2007) Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J Bacteriol 189:6751–6762. https://doi.org/10.1128/JB.00533-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SMW, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:e92. https://doi.org/10.1371/journal.pbio.0050092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology—a review. Soil Biol Biochem 36:1275–1288. https://doi.org/10.1016/J.SOILBIO.2004.04.009

    Article  CAS  Google Scholar 

  29. Desmond C, Ross RP, O’Callaghan E, Fitzgerald G, Stanton C (2002) Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J Appl Microbiol 93:1003–1011

    Article  CAS  Google Scholar 

  30. Domínguez-Ferreras A, Pérez-Arnedo R, Becker A, Olivares J, Soto MJ, Sanjuán J (2006) Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J Bacteriol 188:7617–7625. https://doi.org/10.1128/JB.00719-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Dorken G, Ferguson GP, French CE, Poon WCK (2012) Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide. J R Soc Interface 9:3490–3502. https://doi.org/10.1098/rsif.2012.0498

    Article  PubMed  PubMed Central  Google Scholar 

  32. Du X, Wang X, Dong X, Li P, Wang S (2018) Characterization of the desiccation tolerance of Cronobacter sakazakii strains. Front Microbiol 9:2867. https://doi.org/10.3389/FMICB.2018.02867

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dupont S, Beney L, Ritt J-F, Lherminier J, Gervais P (2010) Lateral reorganization of plasma membrane is involved in the yeast resistance to severe dehydration. Biochim Biophys Acta Biomembr 1798:975–985. https://doi.org/10.1016/j.bbamem.2010.01.015

    Article  CAS  Google Scholar 

  34. Dupont S, Rapoport A, Gervais P, Beney L (2014) Survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl Microbiol Biotechnol 98:8821–8834. https://doi.org/10.1007/s00253-014-6028-5

    Article  PubMed  CAS  Google Scholar 

  35. Dupuy P, Gourion B, Sauviac L, Bruand C (2017) DNA double-strand break repair is involved in desiccation resistance of Sinorhizobium meliloti, but is not essential for its symbiotic interaction with Medicago truncatula. Microbiology 163:333–342. https://doi.org/10.1099/mic.0.000400

    Article  PubMed  CAS  Google Scholar 

  36. Eleutheria ECA, de Araujo PS, Panek AD (1993) Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae. Biochim Biophys Acta, Gen Subj 1156:263–266. https://doi.org/10.1016/0304-4165(93)90040-F

    Article  Google Scholar 

  37. El-kest SE, Marth EH (1992) Freezing of Listeria monocytogenes and other microorganisms: a review. J Food Prot 55:639–648. https://doi.org/10.4315/0362-028X-55.8.639

    Article  PubMed  Google Scholar 

  38. Esbelin J, Santos T, Hébraud M (2018) Desiccation: an environmental and food industry stress that bacteria commonly face. Food Microbiol 69:82–88. https://doi.org/10.1016/j.fm.2017.07.017

    Article  PubMed  CAS  Google Scholar 

  39. Farrow JM, Wells G, Pesci EC (2018) Desiccation tolerance in Acinetobacter baumannii is mediated by the two-component response regulator BfmR. PLoS One 13:e0205638. https://doi.org/10.1371/journal.pone.0205638

  40. Finn S, Condell O, McClure P, Amézquita A, Fanning S (2013) Mechanisms of survival, responses and sources of Salmonella in low-moisture environments. Front Microbiol 4:331. https://doi.org/10.3389/fmicb.2013.00331

    Article  PubMed  PubMed Central  Google Scholar 

  41. Flechard M, Fontenelle C, Trautwetter A, Ermel G, Blanco C (2009) Sinorhizobium meliloti rpoE2 is necessary for H2O2 stress resistance during the stationary growth phase. FEMS Microbiol Lett 290:25–31. https://doi.org/10.1111/j.1574-6968.2008.01401.x

    Article  PubMed  CAS  Google Scholar 

  42. Flechard M, Fontenelle C, Blanco C, Goude R, Ermel G, Trautwetter A (2010) RpoE2 of Sinorhizobium meliloti is necessary for trehalose synthesis and growth in hyperosmotic media. Microbiology 156:1708–1718. https://doi.org/10.1099/mic.0.034850-0

    Article  PubMed  CAS  Google Scholar 

  43. França MB, Panek AD, Eleutherio ECA (2007) Oxidative stress and its effects during dehydration. Comp Biochem Physiol Part A Mol Integr Physiol 146:621–631. https://doi.org/10.1016/j.cbpa.2006.02.030

    Article  CAS  Google Scholar 

  44. Fredrickson JK, Li SW, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403. https://doi.org/10.1038/ismej.2007.116

    Article  PubMed  CAS  Google Scholar 

  45. Fu N, Chen XD (2011) Towards a maximal cell survival in convective thermal drying processes. Food Res Int 44:1127–1149. https://doi.org/10.1016/J.FOODRES.2011.03.053

    Article  CAS  Google Scholar 

  46. Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:272–328

    PubMed  CAS  Google Scholar 

  47. García AH (2011) Anhydrobiosis in bacteria: from physiology to applications. J Biosci 36:939–950

    Article  CAS  Google Scholar 

  48. García De Castro A, Bredholt H, Strøm AR, Tunnacliffe A (2000) Anhydrobiotic engineering of gram-negative bacteria. Appl Environ Microbiol 66:4142–4144

    Article  Google Scholar 

  49. Garmiri P, Coles KE, Humphrey TJ, Cogan TA (2008) Role of outer membrane lipopolysaccharides in the protection of Salmonella enterica serovar Typhimurium from desiccation damage. FEMS Microbiol Lett 281:155–159. https://doi.org/10.1111/j.1574-6968.2008.01093.x

  50. Gayoso CM, Mateos J, Méndez JA, Fernández-Puente P, Rumbo C, Tomás M, Martínez de Ilarduya Ó, Bou G (2014) Molecular mechanisms involved in the response to desiccation stress and persistence in Acinetobacter baumannii. J Proteome Res 13:460–476. https://doi.org/10.1021/pr400603f

    Article  PubMed  CAS  Google Scholar 

  51. Gottesman S, Wickner S, Maurizi MR (1997) Protein quality control: triage by chaperones and proteases. Genes Dev 11:815–823

    Article  CAS  Google Scholar 

  52. Gruzdev N, McClelland M, Porwollik S, Ofaim S, Pinto R, Saldinger-Sela S (2012) Global transcriptional analysis of dehydrated Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 78:7866–7875. https://doi.org/10.1128/AEM.01822-12

  53. Halverson LJ, Firestone MK (2000) Differential effects of permeating and nonpermeating solutes on the fatty acid composition of Pseudomonas putida. Appl Environ Microbiol 66:2414–2421. https://doi.org/10.1128/AEM.66.6.2414-2421.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hernández A, Zamora J, González N, Salazar E, Sánchez MDC (2009) Anhydrobiosis quotient: a novel approach to evaluate stability in desiccated bacterial cells. J Appl Microbiol 107:436–442. https://doi.org/10.1111/j.1365-2672.2009.04216.x

    Article  PubMed  CAS  Google Scholar 

  55. Hernández M, Klose M, Claus P, Bastviken D, Marotta H, Figueiredo V, Enrich-Prast A, Conrad R (2019) Structure, function and resilience to desiccation of methanogenic microbial communities in temporarily inundated soils of the Amazon rainforest (Cunia Reserve, Rondonia). Environ Microbiol 21:1702–1717. https://doi.org/10.1111/1462-2920.14535

    Article  PubMed  CAS  Google Scholar 

  56. Hingston PA, Piercey MJ, Truelstrup Hansen L (2015) Genes associated with desiccation and osmotic stress in Listeria monocytogenes as revealed by insertional mutagenesis. Appl Environ Microbiol 81:5350–5362. https://doi.org/10.1128/AEM.01134-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Huang S, Vignolles M-L, Chen XD, Le Loir Y, Jan G, Schuck P, Jeantet R (2017) Spray drying of probiotics and other food-grade bacteria: a review. Trends Food Sci Technol 63:1–17. https://doi.org/10.1016/J.TIFS.2017.02.007

    Article  Google Scholar 

  58. Humann JL, Kahn ML (2015) Genes involved in desiccation resistance of rhizobia and other bacteria. In: de Bruijn FJ (ed) Biological nitrogen fixation. John Wiley & Sons, Inc, New Jersey, pp 397–404

  59. Humann JL, Ziemkiewicz HT, Yurgel SN, Kahn ML (2009) Regulatory and DNA repair genes contribute to the desiccation resistance of Sinorhizobium meliloti Rm1021. Appl Environ Microbiol 75:446–453. https://doi.org/10.1128/AEM.02207-08

    Article  PubMed  CAS  Google Scholar 

  60. Iibuchi R, Hara-kudo Y, Hasegawa A, Kumagai S (2010) Survival of Salmonella on a polypropylene surface under dry conditions in relation to biofilm-formation capability. J Food Prot 73:1506–1510. https://doi.org/10.4315/0362-028X-73.8.1506

    Article  PubMed  Google Scholar 

  61. Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418. https://doi.org/10.1146/annurev.micro.57.030502.090938

    Article  PubMed  CAS  Google Scholar 

  62. Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776. https://doi.org/10.1146/annurev.biochem.77.061606.161055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Jans A, Vercruysse M, Gao S, Engelen K, Lambrichts I, Fauvart M, Michiels J (2013) Canonical and non-canonical EcfG sigma factors control the general stress response in Rhizobium etli. Microbiologyopen 2:976–987. https://doi.org/10.1002/mbo3.137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. John RP, Tyagi RD, Brar SK, Surampalli RY, Prévost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31:211–226. https://doi.org/10.3109/07388551.2010.513327

    Article  PubMed  CAS  Google Scholar 

  65. Juhnke H, Krems B, Kötter P, Entian KD (1996) Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet 252:456–464

    Article  CAS  Google Scholar 

  66. Kaminsky LM, Trexler RV, Malik RJ, Hockett KL, Bell TH (2019) The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol 37:140–151. https://doi.org/10.1016/J.TIBTECH.2018.11.011

    Article  PubMed  CAS  Google Scholar 

  67. Katoh H, Asthana RK, Ohmori M (2004) Gene expression in the Cyanobacterium Anabaena sp. PCC7120 under desiccation. Microb Ecol 47:164–174. https://doi.org/10.1007/s00248-003-1043-6

    Article  PubMed  CAS  Google Scholar 

  68. Kieft TL, Ringelberg DB, White DC (1994) Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium. Appl Environ Microbiol 60:3292–3299

    Article  CAS  Google Scholar 

  69. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Ulrich Hartl F (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355. https://doi.org/10.1146/annurev-biochem-060208-092442

    Article  PubMed  CAS  Google Scholar 

  70. Klähn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13:551–562. https://doi.org/10.1111/j.1462-2920.2010.02366.x

    Article  CAS  Google Scholar 

  71. Knowles EJ, Castenholz RW (2008) Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms. FEMS Microbiol Ecol 66:261–270. https://doi.org/10.1111/j.1574-6941.2008.00568.x

    Article  PubMed  CAS  Google Scholar 

  72. Kocharunchitt C, King T, Gobius K, Bowman JP, Ross T (2014) Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt downshift in water activity. PLoS One 9:e90422. https://doi.org/10.1371/journal.pone.0090422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Köhn B, Kovermann M (2019) Macromolecular crowding tunes protein stability by manipulating solvent accessibility. ChemBioChem 20:759–763. https://doi.org/10.1002/cbic.201800679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kosanke JW, Osburn MS, Smith RS (1997) Process for preparation of bacterial agricultural products. US patent 5695541

  75. Kozyrovska NO, Negrutska VV, Kovalchuk MV, Voznyuk TN (2005) Paenibacillus sp. as a promising candidate for development of a novel technology of inoculant production. Biopolym Cell 21:312–318. https://doi.org/10.7124/bc.0006F7

    Article  CAS  Google Scholar 

  76. Kurz M (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Syst 4:6. https://doi.org/10.1186/1746-1448-4-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. LeBlanc JC, Gonçalves ER, Mohn WW (2008) Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74:2627–2636. https://doi.org/10.1128/AEM.02711-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lebre PH, De Maayer P, Cowan DA (2017) Xerotolerant bacteria: surviving through a dry spell. Nat Rev Microbiol 15:285–296. https://doi.org/10.1038/nrmicro.2017.16

    Article  PubMed  CAS  Google Scholar 

  79. Lehman AP, Long SR (2013) Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage. J Bacteriol 195:5362–5369. https://doi.org/10.1128/JB.00681-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Li H, Bhaskara A, Megalis C, Tortorello ML (2012) Transcriptomic analysis of Salmonella desiccation resistance. Foodborne Pathog Dis 9:1143–1151. https://doi.org/10.1089/fpd.2012.1254

    Article  PubMed  CAS  Google Scholar 

  81. Lian W-C, Hsiao HC, Chou CC (2002) Survival of bifidobacteria after spray-drying. Int J Food Microbiol 74:79–86. https://doi.org/10.1016/s0168-1605(01)00733-4

    Article  PubMed  Google Scholar 

  82. Liu J, Jiang W, Li F, Wang L, Zeng J, Li Q, Wang Y, Yang Q (2014) Effect of drying conditions on the particle size, dispersion state, and mechanical sensitivities of Nano HMX. Propellants. Explos Pyrotech 39:30–39. https://doi.org/10.1002/prep.201300050

    Article  CAS  Google Scholar 

  83. López-Lara IM, Sohlenkamp C, Geiger O (2003) Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions. Mol Plant-Microbe Interact 16:567–579. https://doi.org/10.1094/MPMI.2003.16.7.567

    Article  PubMed  Google Scholar 

  84. Majeed A, Muhammad Z, Ahmad H (2018) Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep 37:1599–1609. https://doi.org/10.1007/s00299-018-2341-2

    Article  PubMed  CAS  Google Scholar 

  85. Mandal RK, Kwon YM (2017) Global screening of Salmonella enterica serovar Typhimurium genes for desiccation survival. Front Microbiol 8:1723. https://doi.org/10.3389/fmicb.2017.01723

  86. Manzanera M, García de Castro A, Tøndervik A, Rayner-Brandes M, Strøm AR, Tunnacliffe A (2002) Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440. Appl Environ Microbiol 68:4328–4333. https://doi.org/10.1128/AEM.68.9.4328-4333.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Manzanera M, Vilchez S, Tunnacliffe A (2004) High survival and stability rates of Escherichia coli dried in hydroxyectoine. FEMS Microbiol Lett 233:347–352. https://doi.org/10.1111/j.1574-6968.2004.tb09502.x

    Article  PubMed  CAS  Google Scholar 

  88. McIntyre HJ, Davies H, Hore TA, Miller SH, Dufour J-P, Ronson CW (2007) Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance. Appl Environ Microbiol 73:3984–3992. https://doi.org/10.1128/AEM.00412-07

  89. Meng XC, Stanton C, Fitzgerald GF, Daly C, Ross RP (2008) Anhydrobiotics: the challenges of drying probiotic cultures. Food Chem 106:1406–1416. https://doi.org/10.1016/J.FOODCHEM.2007.04.076

    Article  CAS  Google Scholar 

  90. Mika JT, Van Den Bogaart G, Veenhoff L, Krasnikov V, Poolman B (2010) Molecular sieving properties of the cytoplasm of Escherichia coli and consequences of osmotic stress. Mol Microbiol 77:200–207. https://doi.org/10.1111/j.1365-2958.2010.07201.x

    Article  PubMed  CAS  Google Scholar 

  91. Miklos AC, Sarkar M, Wang Y, Pielak GJ (2011) Protein crowding tunes protein stability. J Am Chem Soc 133:7116–7120. https://doi.org/10.1021/ja200067p

    Article  PubMed  CAS  Google Scholar 

  92. Monier J-M, Lindow SE (2003) Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci 100:15977–15982. https://doi.org/10.1073/pnas.2436560100

    Article  PubMed  CAS  Google Scholar 

  93. Morano KA (2014) Anhydrobiosis: drying out with sugar. Curr Biol 24:R1121–R1123. https://doi.org/10.1016/J.CUB.2014.10.022

    Article  PubMed  CAS  Google Scholar 

  94. Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of micro-organisms by drying; a review. J Microbiol Methods 66:183–193. https://doi.org/10.1016/j.mimet.2006.02.017

    Article  PubMed  CAS  Google Scholar 

  95. Motohashi K, Watanabe Y, Yohda M, Yoshida M (1999) Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc Natl Acad Sci U S A 96:7184–7189

    Article  CAS  Google Scholar 

  96. Nocker A, Fernández PS, Montijn R, Schuren F (2012) Effect of air drying on bacterial viability: a multiparameter viability assessment. J Microbiol Methods 90:86–95. https://doi.org/10.1016/j.mimet.2012.04.015

    Article  PubMed  CAS  Google Scholar 

  97. Obuchi K, Iwahashi H, Lepock JR, Komatsu Y (2000) Calorimetric characterization of critical targets for killing and acquired thermotolerance in yeast. Yeast 16:111–119. https://doi.org/10.1002/(SICI)1097-0061(20000130)16:2<111::AID-YEA507>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

  98. Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60:740–745

    Article  CAS  Google Scholar 

  99. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2. https://doi.org/10.1186/1746-1448-4-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Paciaroni A, Cinelli S, Cornicchi E, De Francesco A, Onori G (2005) Fast fluctuations in protein powders: the role of hydration. Chem Phys Lett 410:400–403. https://doi.org/10.1016/J.CPLETT.2005.05.098

    Article  CAS  Google Scholar 

  101. Parry BR, Surovtsev IV, Cabeen MT, O’Hern CS, Dufresne ER, Jacobs-Wagner C (2014) The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156:183–194. https://doi.org/10.1016/j.cell.2013.11.028

    Article  PubMed  CAS  Google Scholar 

  102. Patel A, Malinovska L, Saha S, Wang J, Alberti S, Krishnan Y, Hyman AA (2017) ATP as a biological hydrotrope. Science 356(80):753–756. https://doi.org/10.1126/science.aaf6846

    Article  PubMed  CAS  Google Scholar 

  103. Paul D (2013) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 53:101–110. https://doi.org/10.1002/jobm.201100288

    Article  PubMed  CAS  Google Scholar 

  104. Peighambardoust SH, Golshan Tafti A, Hesari J (2011) Application of spray drying for preservation of lactic acid starter cultures: a review. Trends Food Sci Technol 22:215–224. https://doi.org/10.1016/J.TIFS.2011.01.009

    Article  CAS  Google Scholar 

  105. Pereira E d J, Panek AD, ECA E (2003) Protection against oxidation during dehydration of yeast. Cell Stress Chaperones 8:120–124

    Article  Google Scholar 

  106. Persson E, Halle B (2008) Cell water dynamics on multiple time scales. Proc Natl Acad Sci 105:6266–6271. https://doi.org/10.1073/pnas.0709585105

    Article  PubMed  Google Scholar 

  107. Pitcher RS, Brissett NC, Picher AJ, Andrade P, Juarez R, Thompson D, Fox GC, Blanco L, Doherty AJ (2007a) Structure and function of a mycobacterial NHEJ DNA repair polymerase. J Mol Biol 366:391–405. https://doi.org/10.1016/j.jmb.2006.10.046

    Article  PubMed  CAS  Google Scholar 

  108. Pitcher RS, Green AJ, Brzostek A, Korycka-Machala M, Dziadek J, Doherty AJ (2007b) NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation. DNA Repair (Amst) 6:1271–1276. https://doi.org/10.1016/J.DNAREP.2007.02.009

    Article  CAS  Google Scholar 

  109. Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Mol Biol Rev 58:755–805

  110. Potts M, Slaughter SM, Hunneke F-U, Garst JF, Helm RF (2005) Desiccation tolerance of prokaryotes: application of principles to human cells. Integr Comp Biol 45:800–809. https://doi.org/10.1093/icb/45.5.800

    Article  PubMed  CAS  Google Scholar 

  111. Prasad J, McJarrow P, Gopal P (2003) Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl Environ Microbiol 69:917–925. https://doi.org/10.1128/aem.69.2.917-925.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Prasanna R, Triveni S, Bidyarani N, Babu S, Yadav K, Adak A, Khetarpal S, Pal M, Shivay YS, Saxena AK (2014) Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Arch Agron Soil Sci 60:349–366. https://doi.org/10.1080/03650340.2013.792407

    Article  Google Scholar 

  113. Rajeev L, da Rocha UN, Klitgord N, Luning EG, Fortney J, Axen SD, Shih PM, Bouskill NJ, Bowen BP, Kerfeld CA, Garcia-Pichel F, Brodie EL, Northen TR, Mukhopadhyay A (2013) Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7:2178–2191. https://doi.org/10.1038/ismej.2013.83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Riveros B, Ferrer J, Bórquez R (2009) Spray drying of a vaginal probiotic strain of Lactobacillus acidophilus. Dry Technol 27:123–132. https://doi.org/10.1080/07373930802566002

    Article  Google Scholar 

  115. Rojas-Tapias D, Ortega Sierra O, Rivera Botía D, Bonilla R (2014) Preservation of Azotobacter chroococcum vegetative cells in dry polymers. Univ Sci 20:201. https://doi.org/10.11144/Javeriana.SC20-2.pacv

    Article  Google Scholar 

  116. Rüberg S, Tian Z-X, Krol E, Linke B, Meyer F, Wang Y, Pühler A, Weidner S, Becker A (2003) Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression. J Biotechnol 106:255–268. https://doi.org/10.1016/J.JBIOTEC.2003.08.005

    Article  PubMed  Google Scholar 

  117. Russell NJ, Evans RI, ter Steeg PF, Hellemons J, Verheul A, Abee T (1995) Membranes as a target for stress adaptation. Int J Food Microbiol 28:255–261. https://doi.org/10.1016/0168-1605(95)00061-5

    Article  PubMed  CAS  Google Scholar 

  118. Santivarangkna C, Kulozik U, Foerst P (2007) Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol Prog 23:302–315. https://doi.org/10.1021/bp060268f

    Article  PubMed  CAS  Google Scholar 

  119. Santos R, Bocquet S, Puppo A, Touati D (1999) Characterization of an atypical superoxide dismutase from Sinorhizobium meliloti. J Bacteriol 181:4509–4516

    Article  CAS  Google Scholar 

  120. Sauviac L, Philippe H, Phok K, Bruand C (2007) An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. J Bacteriol 189:4204–4216. https://doi.org/10.1128/JB.00175-07

  121. Schlüter JP, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A (2013) Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti 1021. BMC Genomics 14:156. https://doi.org/10.1186/1471-2164-14-156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Schoebitz M, López MD, Roldán A (2013) Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review. Agron Sustain Dev 33:751–765. https://doi.org/10.1007/s13593-013-0142-0

    Article  CAS  Google Scholar 

  123. Schoug Å, Fischer J, Heipieper HJ, Schnürer J, Håkansson S (2008) Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3. J Ind Microbiol Biotechnol 35:175–181. https://doi.org/10.1007/s10295-007-0281-x

    Article  PubMed  CAS  Google Scholar 

  124. Shuman S, Glickman MS (2007) Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 5:852–861. https://doi.org/10.1038/nrmicro1768

    Article  PubMed  CAS  Google Scholar 

  125. Siliakus MF, van der Oost J, Kengen SWM (2017) Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21:651–670. https://doi.org/10.1007/s00792-017-0939-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Simonin H, Beney L, Gervais P (2007) Sequence of occurring damages in yeast plasma membrane during dehydration and rehydration: mechanisms of cell death. Biochim Biophys Acta Biomembr 1768:1600–1610. https://doi.org/10.1016/j.bbamem.2007.03.017

    Article  CAS  Google Scholar 

  127. Singh P, Tiwari A, Singh SP, Asthana RK (2013) Desiccation induced changes in osmolytes production and the antioxidative defence in the cyanobacterium Anabaena sp. PCC 7120. Physiol Mol Biol Plants 19:61–68. https://doi.org/10.1007/s12298-012-0145-3

  128. Sorroche FG, Rinaudi LV, Zorreguieta Á, Giordano W (2010) EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells. Curr Microbiol 61:465–470. https://doi.org/10.1007/s00284-010-9639-9

    Article  PubMed  CAS  Google Scholar 

  129. Sorroche FG, Spesia MB, Zorreguieta A, Giordano W (2012) A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol 78:4092–4101. https://doi.org/10.1128/AEM.07826-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Srikumar S, Cao Y, Yan Q, Van Hoorde K, Nguyen S, Cooney S, Gopinath GR, Tall BD, Sivasankaran SK, Lehner A, Stephan R, Fanning S (2018) RNA sequencing-based transcriptional overview of xerotolerance in Cronobacter sakazakii SP291. Appl Environ Microbiol 85. https://doi.org/10.1128/AEM.01993-18

  131. Stadtman ER, Levine RL (2006) Protein oxidation. Ann N Y Acad Sci 899:191–208. https://doi.org/10.1111/j.1749-6632.2000.tb06187.x

    Article  Google Scholar 

  132. Stadtman ER, Berlett BS, Chock PB (1990) Manganese-dependent disproportionation of hydrogen peroxide in bicarbonate buffer. Proc Natl Acad Sci U S A 87:384–388. https://doi.org/10.1073/PNAS.87.1.384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Stephan D, Da Silva A-PM, Bisutti IL (2016) Optimization of a freeze-drying process for the biocontrol agent Pseudomonas spp. and its influence on viability, storability and efficacy. Biol Control 94:74–81. https://doi.org/10.1016/J.BIOCONTROL.2015.12.004

  134. Stephens JH, Rask H (2000) Inoculant production and formulation. Field Crop Res 65:249–258. https://doi.org/10.1016/S0378-4290(99)00090-8

    Article  Google Scholar 

  135. Šťovíček A, Kim M, Or D, Gillor O (2017) Microbial community response to hydration-desiccation cycles in desert soil. Sci Rep 7:45735. https://doi.org/10.1038/srep45735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Strasser S, Neureiter M, Geppl M, Braun R, Danner H (2009) Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J Appl Microbiol 107:167–177. https://doi.org/10.1111/j.1365-2672.2009.04192.x

    Article  PubMed  CAS  Google Scholar 

  137. Streeter JG (2003) Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J Appl Microbiol 95:484–491. https://doi.org/10.1046/j.1365-2672.2003.02017.x

    Article  PubMed  CAS  Google Scholar 

  138. Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71:7327–7333. https://doi.org/10.1128/AEM.71.11.7327-7333.2005

  139. Tanford C (1997) How protein chemists learned about the hydrophobic factor. Protein Sci 6:1358–1366. https://doi.org/10.1002/pro.5560060627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Tapia H, Koshland DE (2014) Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr Biol 24:2758–2766. https://doi.org/10.1016/J.CUB.2014.10.005

    Article  PubMed  CAS  Google Scholar 

  141. Tokuriki N, Kinjo M, Negi S, Hoshino M, Goto Y, Urabe I, Yomo T (2004) Protein folding by the effects of macromolecular crowding. Protein Sci 13:125–133. https://doi.org/10.1110/ps.03288104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Trelea IC, Fonseca F, Passot S (2016) Dynamic modeling of the secondary drying stage of freeze drying reveals distinct desorption kinetics for bound water. Dry Technol 34:335–345. https://doi.org/10.1080/07373937.2015.1054509

    Article  CAS  Google Scholar 

  143. Truelstrup Hansen L, Vogel BF (2011) Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: survival and transfer to salmon products. Int J Food Microbiol 146:88–93. https://doi.org/10.1016/J.IJFOODMICRO.2011.01.032

    Article  CAS  Google Scholar 

  144. Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11:777–788. https://doi.org/10.1038/nrm2993

    Article  PubMed  CAS  Google Scholar 

  145. Vanderlinde EM, Muszynski A, Harrison JJ, Koval SF, Foreman DL, Ceri H, Kannenberg EL, Carlson RW, Yost CK (2009) Rhizobium leguminosarum biovar viciae 3841, deficient in 27-hydroxyoctacosanoate-modified lipopolysaccharide, is impaired in desiccation tolerance, biofilm formation and motility. Microbiology 155:3055–3069. https://doi.org/10.1099/mic.0.025031-0

  146. Vercruysse M, Fauvart M, Jans A, Beullens S, Braeken K, Cloots L, Engelen K, Marchal K, Michiels J (2011) Stress response regulators identified through genome-wide transcriptome analysis of the (p)ppGpp-dependent response in Rhizobium etli. Genome Biol 12:R17–R19. https://doi.org/10.1186/gb-2011-12-2-r17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. https://doi.org/10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  148. Vriezen JAC, de Bruijn FJ, Nüsslein K (2007) Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl Environ Microbiol 73:3451–3459. https://doi.org/10.1128/AEM.02991-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Wang Y, Sarkar M, Smith AE, Krois AS, Pielak GJ (2012) Macromolecular crowding and protein stability. J Am Chem Soc 134:16614–16618. https://doi.org/10.1021/ja305300m

    Article  PubMed  CAS  Google Scholar 

  150. Wang J, Huang S, Fu N, Jeantet R, Chen XD (2016) Thermal aggregation of calcium-fortified skim milk enhances probiotic protection during convective droplet drying. J Agric Food Chem 64:6003–6010. https://doi.org/10.1021/acs.jafc.6b02205

    Article  PubMed  CAS  Google Scholar 

  151. Whatmore AM, Chudek JA, Reed RH (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136:2527–2535. https://doi.org/10.1099/00221287-136-12-2527

    Article  PubMed  CAS  Google Scholar 

  152. White AP, Gibson DL, Kim W, Kay WW, Surette MG (2006) Thin aggregative fimbriae and cellulose enhance long-term survival and persistence of Salmonella. J Bacteriol 188:3219–3227. https://doi.org/10.1128/JB.188.9.3219-3227.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Wieczorek G, Zielenkiewicz P (2008) Influence of macromolecular crowding on protein-protein association rates--a Brownian dynamics study. Biophys J 95:5030–5036. https://doi.org/10.1529/biophysj.108.136291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Zolkiewski M (1999) ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J Biol Chem 274:28083–28086

    Article  CAS  Google Scholar 

Download references

Funding

VG received a fellowship from the Flemish Agency for Innovation and Entrepreneurship (VLAIO). This work was supported by the grant IWT150711.

Author information

Affiliations

Authors

Contributions

VG performed the literature search and wrote the manuscript. The manuscript was critically revised by JM. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jan Michiels.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Greffe, V.R.G., Michiels, J. Desiccation-induced cell damage in bacteria and the relevance for inoculant production. Appl Microbiol Biotechnol 104, 3757–3770 (2020). https://doi.org/10.1007/s00253-020-10501-6

Download citation

Keywords

  • Desiccation
  • Xerotolerance
  • Inoculant
  • Plant growth–promoting bacteria
  • Oxidative stress
  • Membrane stress