Skip to main content
Log in

Bat guano-dwelling microbes and antimicrobial properties of the pygidial gland secretion of a troglophilic ground beetle against them

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bat guano is an important source of microbial diversity in caves and can be a source of potential pathogens. Laemostenus (Pristonychus) punctatus is a guanophilic ground beetle species, which pygidial gland secretion exhibits action against pathogenic and other microbes. The distribution and diversity of microbes in bat guano from a karstic cave were determined in this study. Additionally, antimicrobial activity of the pygidial gland secretion of L. (P.) punctatus against guano-dwelling microbes was tested; minimal inhibitory concentration (MIC) and chemical composition of the secretion were analyzed. In total, 63 different bacterial species and 16 fungal morphotypes were isolated from guano samples by the cultivation method and confirmed using and phenotypic characterization and molecular identification. There was a difference in the composition of certain microorganisms between the sampling points (cave locations) and between the guano layers. The largest number of bacterial isolates belongs to the genera Lysinibacillus and Paenibacillus, while Pseudomonas species were highly abundant at the innermost sampling point. For the guanophilic fungi, the majority are ascomycetes, with Penicillium and Aspergillus as the most dominant genera. Meyerozyma guilliermondii was the only yeast species found in the guano samples. The most sensitive isolates were Enterococcus eurekensis (MIC 0.007 mg/mL) and Escherichia fergusonii (MIC 0.028 mg/mL). The most sensitive fungal isolates were M. guilliermondii, Penicillium expansum, and Trichoderma harzianum (MIC 0.15 mg/mL). This study opens a new possibility for better understanding of ecological relations between microorganisms and troglophilic ground beetles and for detailed investigations of morpho-anatomical aspects of pygidial glands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barton HA (2006) Introduction to cave microbiology: a review for the non-specialists. J Cave Karst Stud 68(2):43–54

    Google Scholar 

  • Blum MS (1981) Chemical defenses of arthropods. Academic Press, New York

  • Borda DR, Năstase-Bucur RM, Spînu M, Uricariu R, Mulec J (2014) Aerosolized microbes from organic rich materials: case study of bat guano from caves in Romania. J Cave Karst Stud 76(2):114–126

    Google Scholar 

  • Casale A (1988) Revisione degli Sphodrina (Coleoptera, Carabidae, Sphodrini). Monografie V. Regional Museum of Natural Science, Turin

    Google Scholar 

  • Clark VC (2009) Collecting arthropod and amphibian secretions for chemical analyses. In: Zhang W, Liu H (eds) Behavioral and chemical ecology. Nova Science Publishers, Hauppauge, pp 1–46

    Google Scholar 

  • Ćurčić SB, Brajković MM, Ćurčić BPM (2007) The carabids of Serbia. Monographs, volume 11. Institute of Zoology, Faculty of Biology, University of Belgrade, Committee for Karst and Speleology, Serbian Academy of Sciences and Arts, Department of Conservation Biology, Vegetation- and Landscape Ecology, Faculty of Life Sciences, University of Vienna & UNESCO MAB Committee of Serbia, Belgrade-Vienna, Serbia-Austria

  • Daouk KD, Dagher MS, Sattout JE (1995) Antifungal activity of the essential oil of Origanum syriacum L. J Food Prot 58:1147–1149

    CAS  PubMed  Google Scholar 

  • De Mandal S, Zothansanga AKP, Bisht SS, Senthil KN (2015) First report of bacterial community from a bat guano using Illumina next-generation sequencing. Genom Data 4:99–101

    PubMed  PubMed Central  Google Scholar 

  • Di Bella C, Piraino C, Caracappa S, Fornasari L, Violani C, Zava B (2003) Enteric microflora in Italian Chiroptera. J Mt Ecol 7:221–224

    Google Scholar 

  • Di Giulio A, Muzzi M, Romani R (2015) Functional anatomy of the explosive defensive system of bombardier beetles (Coleoptera, Carabidae, Brachininae). Arthropod Struct Dev 44:468–490

    PubMed  Google Scholar 

  • Dimkić I, Živković S, Berić T, Ivanović Ž, Gavrilović V, Stanković S, Fira Đ (2013) Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi. Biol Control 65(3):312–321

    Google Scholar 

  • Forsyth DJ (1972) The structure of the pygidial defence glands of Carabidae (Coleoptera). Trans Zool Soc Lond 32:249–309

    Google Scholar 

  • Giglio A, Brandmayr P, Dalpozzo R, Sindona G, Tagarelli A, Talarico F, Brandmayr TZ, Ferrero EA (2009) The defensive secretion of Carabus lefebvrei Dejean 1826 pupa (Coleoptera, Carabidae): gland ultrastructure and chemical identification. Microsc Res Tech 72(5):351–361

    CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hänel H, Raether W (1988) A more sophisticated method of determining the fungicidal effect of water-insoluble preparations with a cell harvester, using miconazole as an example. Mycoses 31(3):148–154

    PubMed  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim A, Hage CH, Souissi A, Leray A, Héliot L, Souissi S, Vandenbunder B (2015) Label-free microscopy and stress responses reveal the functional organization of Pseudodiaptomus marinus copepod myofibrils. J Struct Biol 191:224–235

    CAS  PubMed  Google Scholar 

  • Ilić B, Dimkić I, Unković N, Ljaljević-Grbić M, Vukojević J, Vujisić L, Tešević V, Stanković S, Makarov S, Lučić L (2018) Millipedes vs. pathogens: defensive secretions of some julids (Diplopoda: Julida) as potential antimicrobial agents. J Appl Entomol 142:775–791

    Google Scholar 

  • Jiang X, Zhong J, Liu Y, Yu H, Zhuo S, Chen J (2011) Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy. Scanning 33:53–56

    PubMed  Google Scholar 

  • Jovčić B, Begović J, Lozo J, Topisirović L, Kojić M (2009) Dynamics of sodium dodecyl sulfate utilization and antibiotic susceptibility of strain Pseudomonas sp. ATCC19151. Arch Biol Sci 61:159–165

    Google Scholar 

  • Julg B, Elias J, Zahn A, Koppen S, Becker-Gaab C, Bogner J (2008) Bat-associated histoplasmosis can be transmitted at entrances of bat caves and not only inside the caves. J Travel Med 15:133–136

    PubMed  Google Scholar 

  • Jurado V, Laiz L, Rodriguez-Nava V, Boiron P, Hermosin B, Sanchez-Moral S, Saiz-Jimenez C (2010) Pathogenic and opportunistic microorganisms in caves. Int J Speleol 39:15–24

    Google Scholar 

  • Kim JJ, Kim SH, Lee S, Breuil C (2003) Distinguishing Ophiostoma ips and Ophiostoma montium, two bark beetle-associated sapstain fungi. FEMS Microbiol Lett 222:187–192

    CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  • Kind T (2003) Automated mass spectral deconvolution and identification system (AMDIS). www.amdis.net. Accessed 27 December 2019

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lečić S, Ćurčić S, Vujisić L, Ćurčić B, Ćurčić N, Nikolić Z, Anđelković B, Milosavljević S, Tešević V, Makarov S (2014) Defensive secretions in three ground-beetle species (Insecta: Coleoptera: Carabidae). Ann Zool Fenn 51:285–300

    Google Scholar 

  • Ma Y, Zhang H, Du Y, Tian T, Xiang T, Liu X, Feng H (2015) The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes. Sci Rep 5:7752

    PubMed  PubMed Central  Google Scholar 

  • Medellin RA, Wiederholt R, Lopez-Hoffman L (2017) Conservation relevance of bat caves for biodiversity and ecosystem services. Biol Conserv 211:45–50

    Google Scholar 

  • Mulec J (2008) Microorganisms in hypogeon: examples from Slovenian karst caves. Acta Carsol 7(1):153–160

    Google Scholar 

  • Mulec J, Zalar P, Hajna NZ, Rupnik M (2002) Screening for culturable microorganisms from cave environments (Slovenia). Acta Carsol 31(2):177–187

    Google Scholar 

  • Nenadić M, Soković M, Glamočlija J, Ćirić A, Perić-Mataruga V, Tešević V, Vujisić L, Todosijević M, Vesović N, Ćurčić S (2016) Antimicrobial activity of the pygidial gland secretion of the troglophilic ground beetle Laemostenus (Pristonychus) punctatus (Dejean, 1828) (Insecta: Coleoptera: Carabidae). Bull Entomol Res 106:474–480

    PubMed  Google Scholar 

  • Nenadić M, Ljaljević-Grbić M, Stupar M, Vukojević J, Ćirić A, Tešević V, Vujisić L, Todosijević M, Vesović N, Živković N, Ćurčić S (2017) Antifungal activity of the pygidial gland secretion of Laemostenus punctatus (Coleoptera: Carabidae) against cave-dwelling micromycetes. Sci Nat 104:52

    Google Scholar 

  • Nenadić M, Soković M, Calhelha RC, Ferreira ICFR, Ćirić A, Vesović N, Ćurčić S (2018) Inhibition of tumour and non-tumour cell proliferation by pygidial gland secretions of four ground beetle species (Coleoptera: Carabidae). Biologia 73(8):787–792

    Google Scholar 

  • Nešić D, Pavićević D, Zatezalo A, Mijatović M, Grubač B (2008) Rezultati kompleksnih istraživanja Ogoreličke pećine. Zaštita Prirode 59:51–66

    Google Scholar 

  • Newman MM, Kloepper LN, Duncan M, McInroy JA, Kloepper JW (2018) Variation in bat guano bacterial community composition with depth. Front Microbiol 9:914

    PubMed  PubMed Central  Google Scholar 

  • Nieves-Rivera ÁM, Santos-Flores CJ, Dugan FM, Miller TE (2009) Guanophilic fungi in three caves of southwestern Puerto Rico. Int J Speleol 38(1):61–70

    Google Scholar 

  • Nováková A (2009) Microscopic fungi isolated from Domica cave system (Slovak karst National Park, Slovakia). A review. Int J Speleol 38(1):71–82

    Google Scholar 

  • Nováková A, Elhottová D, Krištůfek V, Lukešová A, Hill P, Kováč L, Mock A, Luptačik P (2005) Feeding sources of invertebrates in the Ardovská Cave and Domica Cave systems – preliminary results. In: Tajovský K, Schlaghamerský J, Pižl V (eds) Contributions to soil zoology in Central Europe. Institute of Soil Biology of the Czech Academy of Sciences, České Budějovice, pp 107–112

    Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116

  • Ogórek R, Lejman A, Matkowski K (2013) Fungi isolated from Niedźwiedzia cave in Kletno (lower Silesia, Poland). Int J Speleol 42(2):161–166

    Google Scholar 

  • Ogórek R, Dyląg M, Kozak B, Višnovska Z, Tančinová D, Lejman A (2016) Fungi isolated and quantified from bat guano and air in Harmanecká and Driny Caves (Slovakia). J Cave Karst Stud 78(1):41–49

    Google Scholar 

  • Pitt JI (1979) The genus Penicillium and its teleomorphic state Eupenicillium and Talaromyces. Academic Press, London

    Google Scholar 

  • Porca M, Jurado V, Martin-Sanchez MP, Hermonis B, Bastian F, Alabouvette C, Saiz-Jimenez C (2011) Aerobiology: an ecological indicator for early detection and control of fungal outbreaks in caves. Ecol Indic 11:1594–1598

    Google Scholar 

  • Poulson TL, Lavoie KH (2000) The trophic basis of subsurface ecosystems. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, Subterranean ecosystems, vol 30. Elsevier, Amsterdam, pp 231–249

    Google Scholar 

  • Rabasović MD, Pantelić DV, Jelenković BM, Ćurčić SB, Rabasović MS, Vrbica MD, Lazović VM, Ćurčić BPM, Krmpot AJ (2015) Nonlinear microscopy of chitin and chitinous structures: a case study of two cave-dwelling insects. J Biomed Opt 20:016010

    PubMed  Google Scholar 

  • Raper BK, Fennel DI (1965) The genus Aspergillus. The Williams and Wilkins company, Baltimore

    Google Scholar 

  • Ristivojević P, Dimkić I, Trifković J, Berić T, Vovk I, Milojković-Opsenica D, Stanković S (2016) Antimicrobial activity of Serbian propolis evaluated by means of MIC, HPTLC, bioautography and chemometrics. PLoS One 11:e0157097

    PubMed  PubMed Central  Google Scholar 

  • Rocha-Silva F, Figueiredo SM, Silveira TT, Assunção CB, Campolina SS, Pena-Barbosa JP, Rotondo A, Caligiorne RB (2014) Histoplasmosis outbreak in Tamboril cave—Minas Gerais state, Brazil. Med Mycol Case Rep 4:1–4

    PubMed  Google Scholar 

  • Roe AD, Rice AV, Coltman DW, Cooke JE, Sperling FA (2011) Comparative phylogeography, genetic differentiation and contrasting reproductive modes in three fungal symbionts of a multipartite bark beetle symbiosis. Mol Ecol 20:584–600

    PubMed  Google Scholar 

  • Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and indoor fungi. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Savković Ž, Unković N, Stupar M, Franković M, Jovanović M, Erić S, Šarić K, Stanković S, Dimkić I, Vukojević J, Grbić ML (2016) Diversity and biodeteriorative potential of fungal dwellers on ancient stone stela. Int Biodeterior Biodegradation 115:212–223

    Google Scholar 

  • Stanković S, Dimkić I, Vujisić L, Pavković-Lučić S, Jovanović Z, Stević T, Sofrenić I, Mitić B, Tomić V (2016) Chemical defence in a millipede: evaluation and characterization of antimicrobial activity of the defensive secretion from Pachyiulus hungaricus (Karsch, 1881) (Diplopoda, Julida, Julidae). PLoS One 11:e0167249

    PubMed  PubMed Central  Google Scholar 

  • Suzina NE, Mulyukin AL, Kozlova AN, Shorokhova AP, Dmitriev VV, Barinova ES, Mokhova ON, Duda VI (2004) Ultrastructure of resting cells of some non-spore-forming bacteria. Microbiology 73(4):435–447

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. J Mol Evol 30:2725–2729

    CAS  Google Scholar 

  • Ulloa M, Lappe P, Aguilar S, Park H, Pérez-Mejía A, Toriello C, Taylor LM (2006) Contribution to the study of the mycobiota present in the natural habitats of Histoplasma capsulatum: an integrative study in Guerrero, Mexico. Rev Mex Biodivers 77:153–168

    Google Scholar 

  • Vanderwolf KJ, Malloch D, Ivanova VN, McAlpine FD (2016) Lack of cave-associated mammals influences the fungal assemblages of insular solution caves in eastern Canada. J Cave Karst Stud 78(3):198–207

    Google Scholar 

  • Vandžurová A, Bačkor P, Javorský P, Pristaš P (2013) Staphylococcus nepalensis in the guano of bats (Mammalia). Vet Microbiol 164:116–121

    PubMed  Google Scholar 

  • Vesović N, Ćurčić S, Vujisić L, Nenadić M, Krstić G, Perić-Mataruga V, Milosavljević S, Antić D, Mandić B, Petković M, Vučković I, Marković Đ, Vrbica M, Ćurčić B, Makarov S (2015) Molecular diversity of compounds from pygidial gland secretions of cave-dwelling ground beetles (Insecta: Coleoptera: Carabidae): the first evidence. J Chem Ecol 41:533–539

    PubMed  Google Scholar 

  • Vrbica M, Petrović A, Pantelić D, Krmpot A, Rabasović M, Pavlović D, Jovanić S, Guéorguiev B, Goranov S, Vesović N, Antić D, Marković Đ, Petković M, Stanisavljević L, Ćurčić S (2018) The genus Pheggomisetes Knirsch, 1923 (Coleoptera: Carabidae: Trechinae) in Serbia: taxonomy, morphology and molecular phylogeny. Zool J Linnean Soc 183:347–371

    Google Scholar 

  • Wallace SJ, Morrison JL, Botting KJ, Kee TW (2008) Second-harmonic generation and two-photon-excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments. J Biomed Opt 13:064018

    PubMed  Google Scholar 

  • Watanabe T (2002) Soil and seed fungi. Morphologies of cultured fungi and key to species. CRC Press, London

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Saša Stanković (University of Niš - Faculty of Science and Mathematics, Niš, Serbia), who helped us in field research. The assistance of Marina Todosijević, B.Sc., in secretion measuring is acknowledged.

Funding

The work was financially supported by the Serbian Ministry of Education, Science and Technological Development (Grants Nos. ON173026, ON173032, ON173038, III43001, ON172053, III45016, and ON171038). This study was additionally funded jointly by the Serbian Ministry of Education, Science and Technological Development and the Ministry of Science and Technology of the People’s Republic of China (Grant “Mimetics of Insects for Sensing and Security,” I-2).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Ivica Dimkić, Jovana Kabić, Marija Nenadić, Miloš Stupar, Ljubodrag Vujisić, Svetlana Savić-Šević, Vladimir Žikić, and Nikola Vesović. The first draft of the manuscript was written by Ivica Dimkić, Jovana Kabić, Miloš Stupar, Marija Nenadić, Milica Ljaljević Grbić, and Srećko Ćurčić, and all authors commented on previous versions of the manuscript. Funding acquisition: Slaviša Stanković, Jelena Vukojević, Dejan Pantelić, Vele Tešević, Srećko Ćurčić. Supervision: Ivica Dimkić, Slaviša Stanković, Milica Ljaljević Grbić, and Srećko Ćurčić. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ivica Dimkić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(MP4 587 kb)

ESM 2

(MP4 583 kb)

ESM 3

(MP4 265 kb)

ESM 4

(MP4 263 kb)

ESM 5

(PDF 922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimkić, I., Stanković, S., Kabić, J. et al. Bat guano-dwelling microbes and antimicrobial properties of the pygidial gland secretion of a troglophilic ground beetle against them. Appl Microbiol Biotechnol 104, 4109–4126 (2020). https://doi.org/10.1007/s00253-020-10498-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10498-y

Keywords

Navigation