Skip to main content

Advertisement

Log in

Natural and engineered promoters for gene expression in Lactobacillus species

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lactobacillus species are attractive hosts for the expression of heterologous proteins, antigens, vaccines, and drugs due to their GRAS (generally recognized as safe) status. The bioengineering techniques open new possibilities of improving Lactobacillus strains. In this regard, the control of the gene expression in Lactobacillus strains through the adequate native or engineered promoters acquires a key role in the development of biotechnological applications and for their function as probiotic bacteria. Depending on the objective sought, the protein produced and the strain used, inducible or constitutive promoters can be chosen. Whereas, when a fine-tuning of gene expression is required, the development of synthetic promoter libraries could be the best approach. In this work, we revise the main constitutive and inducible natural promoters from Lactobacillus strains or from other genus that have been applied in Lactobacillus, as well as the few engineered promoters developed for these bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alcántara C, Sarmiento-Rubiano LA, Monedero V, Deutscher J, Pérez-Martínez G, Yebra MJ (2008) Regulation of Lactobacillus casei sorbitol utilization genes requires DNA-binding transcriptional activator GutR and the conserved protein GutM. Appl Environ Microbiol 74(18):5731–5740

    PubMed  PubMed Central  Google Scholar 

  • Allain T, Mansour NM, Bahr MMA, Martín R, Florent I, Langella P, Bermúdez-Humarán LG (2016) A new lactobacilli in vivo expression system for the production and delivery of heterologous proteins at mucosal surfaces. FEMS Microbiol Lett 363:fnw117

    PubMed  Google Scholar 

  • Alvarez-Sieiro P, Martín MC, Redruello B, del Rio B, Ladero V, Palanski BA, Khosla C, Fernández M, Alvarez MA (2014) Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase. Appl Microbiol Biotechnol 98(15):6689–6700

    PubMed  PubMed Central  CAS  Google Scholar 

  • Anbazhagan K, Sasikumar P, Gomathi S, Priya HP, Selvam GS (2013) In vitro degradation of oxalate by recombinant Lactobacillus plantarum expressing heterologous oxalate decarboxylase. J Appl Microbiol 115(3):880–887

    PubMed  CAS  Google Scholar 

  • Arsenijevic S, Topisirovic L (2000) Molecular analysis of mutated Lactobacillus acidophilus promoter-like sequence P15. Can J Microbiol 46:938–945

    PubMed  CAS  Google Scholar 

  • Baek SJ, Jung KH, Hoon Kim H, Kim SF (1997) Expression and secretion of carboxymethyl cellulase in Bacillus subtilis by Lactobacillus casei lactate dehydrogenase gene promoter. Biotechnol Lett 19:27–29

    CAS  Google Scholar 

  • Binishofer B, Moll I, Henrich B, Bläsi U (2002) Inducible promoter-repressor system from the Lactobacillus casei phage φFSW. Appl Environ Microbiol 68(8):4132–4135

    PubMed  PubMed Central  CAS  Google Scholar 

  • Blazeck J, Alper HS (2013) Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol J 8(1):46–58

    PubMed  CAS  Google Scholar 

  • Böhmer N, König S, Fischer L (2013) A novel manganese starvation-inducible expression system for Lactobacillus plantarum. FEMS Microbiol Lett 342(1):37–44

    PubMed  Google Scholar 

  • Bosma EF, Forster J, Nielsen AT (2017) Lactobacilli and pediococci as versatile cell factories – evaluation of strain properties and genetic tools. Biotechnol Adv 35(4):419–442

    PubMed  CAS  Google Scholar 

  • Bron PA, Hoffer SM, Van Swam II, De Vos WM, Kleerebezem M (2004) Selection and characterization of conditionally active promoters in Lactobacillus plantarum, using alanine racemase as a promoter probe. Appl Environ Microbiol 70(1):310–317

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen YS, Steele JL (2005) Analysis of promoter sequences from Lactobacillus helveticus CNRZ32 and their activity in other lactic acid bacteria. J Appl Microbiol 98(1):64–72

    PubMed  CAS  Google Scholar 

  • Chen Y, Qi M, Xu M, Huan H, Shao W, Yang Y (2018) Food-grade gene transformation system constructed in Lactobacillus plantarum using a GlmS-encoding selection marker. FEMS Microbiol Lett 365(21):fny254

    CAS  Google Scholar 

  • Derzelle S, Hallet B, Ferain T, Delcour J, Hols P (2002) Cold shock induction of the cspL gene in Lactobacillus plantarum involves transcriptional regulation. J Bacteriol 184(19):5518–5523

    PubMed  PubMed Central  CAS  Google Scholar 

  • Duong T, Miller MJ, Barrangou R, Azcarate-Peril MA, Klaenhammer TR (2010) Construction of vectors for inducible and constitutive gene expression in Lactobacillus. Microb Biotechnol 4(3):357–367

    PubMed  Google Scholar 

  • Gold RS, Meagher MM, Tong S, Hutkins RW, Conway T (1996) Cloning and expression of the Zymomonas mobilis “production of ethanol” genes in Lactobacillus casei. Curr Microbiol 33:256–260

    PubMed  CAS  Google Scholar 

  • Gosalbes MJ, Esteban CD, Galán JL, Pérez-Martínez G (2000) Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 66(11):4822–4828

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guinane CM, Piper C, Draper LA, O’Connor PM, Hill C, Ross RP, Cotter PD (2015) Impact of environmental factors on bacteriocin promoter activity in gut derived Lactobacillus salivarius. Appl Environ Microbiol 81(22):7851–7859

    PubMed  PubMed Central  CAS  Google Scholar 

  • Heiss S, Hörmann A, Tauer C, Sonnleitner M, Egger E, Grabherr R, Heinl S (2016) Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum. Microb Cell Factories 15:50

    Google Scholar 

  • Hertel C, Schmidt G, Fisher M, Oellers K, Hammes WP (1998) Oxygen-dependent regulation of the expression of the catalase gene katA of Lactobacillus sakei LTH677. Appl Environ Microbiol 64(4):1359–1365

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hols P, Ferain T, Garmyn D, Bernard N, Delcour J (1994) Use of homologous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for α-amylase and levanase expression. Appl Environ Microbiol 60(5):1401–1413

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hols P, Slos P, Dutot P, Reymund J, Chabot P, Delplace B, Delcour J, Mercenier A (1997) Efficient secretion of the model antigen M6-gp41E in Lactobacillus plantarum NCIMB 8826. Microbiol 143(8):2733–2741

    CAS  Google Scholar 

  • Jensen PR, Hammer K (1998a) Artificial promoters for metabolic optimization. Biotechnol Bioeng 58(2–3):191–195

    PubMed  CAS  Google Scholar 

  • Jensen PR, Hammer K (1998b) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64(1):82–87

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kahala M, Palva A (1999) The expression signals of the Lactobacillus brevis slpA gene direct efficient heterologous protein production in lactic acid bacteria. Appl Microbiol Biotechnol 51(1):71–78

    PubMed  CAS  Google Scholar 

  • Kajikawa A, Ichikawa E, Igimi S (2010) Development of a highly efficient protein-secreting system in recombinant Lactobacillus casei. J Microbiol Biotechnol 20(2):375–382

    PubMed  CAS  Google Scholar 

  • Kerovuo J, Tynkkynen S (2000) Expression of Bacillus subtilis phytase in Lactobacillus plantarum 755. Lett Appl Microbiol 30(4):325–329

    PubMed  CAS  Google Scholar 

  • Kiatpapan P, Yamashita M, Kawaraichi N, Yasuda T, Murooka Y (2001) Heterologous expression of a gene encoding cholesterol oxidase in probiotic strains of Lactobacillus plantarum and Propionibacterium freudenreichii under the control of native promoters. J Biosci Bioeng 92(5):459–465

    PubMed  CAS  Google Scholar 

  • Klein JR, Schmidt U, Plapp R (1994) Cloning, heterologous expression, and sequencing of a novel proline iminopeptidase gene, pepl, from Lactobacillus delbrueckii subsp. lactis DSM 7290. Microbiol 140(5):1133–1139

    CAS  Google Scholar 

  • Kolandaswamy A, George L, Sadasivam S (2009) Heterologous expression of oxalate decarboxylase in Lactobacillus plantarum NC8. Curr Microbiol 58(2):117–121

    PubMed  CAS  Google Scholar 

  • Krüger S, Hecker M (1995) Regulation of the putative bglPH operon for aryl-b-glucoside utilization in Bacillus subtilis. J Bacteriol 177(19):5590–5597

    PubMed  PubMed Central  Google Scholar 

  • Krüger C, Hultberg A, van Dollenweerd C, Marcotte H, Hammarström L (2005) Passive immunization by lactobacilli expressing single-chain antibodies against Streptococcus mutans. Mol Biotechnol 31(3):221–230

    PubMed  Google Scholar 

  • Landete JM, García-Haro L, Blasco A, Manzanares P, Berbegal C, Monedero V, Zúñiga M (2010) Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway. Appl Environ Microbiol 76(1):84–95

    PubMed  CAS  Google Scholar 

  • Landete JM, Langa S, Revilla C, Margolles A, Medina M, Arqués JL (2015) Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria. Appl Microbiol Biotechnol 99(16):6865–6877

    PubMed  CAS  Google Scholar 

  • Landete JM, Peirotén A, Margarita M, Arqués JL (2017) Labeling Listeria with anaerobic fluorescent protein for food safety studies. J Dairy Sci 100(1):113–117

  • Leroy F, Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15(2):67–78

    CAS  Google Scholar 

  • Liu J-R, Yu B, Liy F-H, Cheng K-J, Zhao X (2005) Expression of rumen microbial fibrolytic enzyme genes in probiotic Lactobacillus reuteri. Appl Environ Microbiol 71(11):6769–6775

    PubMed  PubMed Central  CAS  Google Scholar 

  • Maldonado A, Ruiz-Barba JL, Jiménez-Díaz R (2003) Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Appl Environ Microbiol 69(1):383–389

    PubMed  PubMed Central  CAS  Google Scholar 

  • Maldonado A, Jiménez-Díaz R, Ruiz-Barba JL (2004) Induction of plantaricin production in Lactobacillus plantarum NC8 after coculture with specific Gram-positive bacteria is mediated by an autoinduction mechanism. J Bacteriol 186(5):1556–1564

    PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-Fernández JA, Bravo A, Peirotén A, Arqués JL, Landete JM (2019) Bile-induced promoters for gene expression in Lactobacillus strains. Appl Microbiol Biotechnol 103:3819–3827

    PubMed  Google Scholar 

  • Matern HT, Klein JR, Henrich B, Plapp BR (1994) Determination and comparison of Lactobacillus delbrueckii ssp. lactis DSM7290 promoter sequences. FEMS Microbiol Lett 122(1–2):121–128

    PubMed  CAS  Google Scholar 

  • Mathiesen G, Namløs HM, Risøen PA, Axelsson L, Eijsink VGH (2004) Use of bacteriocin promoters for gene expression in Lactobacillus plantarum C11. J Appl Microbiol 96(4):819–827

    PubMed  CAS  Google Scholar 

  • Mayo B, Derzelle S, Fernández M, Léonard C, Ferain T, Hols P, Suárez JE, Delcour J (1997) Cloning and characterization of cspL and cspP, two cold-inducible genes from Lactobacillus plantarum. J Bacteriol 179(9):3039–3042

    PubMed  PubMed Central  CAS  Google Scholar 

  • McCracken A, Timms P (1999) Efficiency of transcription from promoter sequence variants in Lactobacillus is both strain and context dependent. J Bacteriol 181(20):6569–6572

    PubMed  PubMed Central  CAS  Google Scholar 

  • McCracken A, Turner MS, Giffard P, Hafner LM, Timms P (2000) Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch Microbiol 173:383–389

    PubMed  CAS  Google Scholar 

  • Miwa Y, Nakata A, Ogiwara A, Yamamoto M, Fujita Y (2000) Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 28(5):1206–1210

    PubMed  PubMed Central  CAS  Google Scholar 

  • Monedero V, Yebra MJ, Poncet S, Deutscher J (2008) Maltose transport in Lactobacillus casei and its regulation by inducer exclusion. Res Microbiol 159(2):94–102

    PubMed  CAS  Google Scholar 

  • Muscariello L, Marasco R, De Felice M, Sacco M (2001) The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum. Appl Environ Microbiol 67(7):2903–2907

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen TT, Mathiesen N, Fredriksen L, Kitt R, Nguyen TH, Eijsink VGH, Dietmar Haltrich D, Peterbauer CK (2011) A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker. J Agric Food Chem 59(10):5617–5624

    PubMed  CAS  Google Scholar 

  • Nguyen TT, Nguyen HM, Geiger B, Mathiesen G, Eijsink VGH, Peterbauer CK, Haltrich D, Nguyen TH (2015) Heterologous expression of a recombinant lactobacillal β-galactosidase in Lactobacillus plantarum: effect of different parameters on the sakacin P-based expression system. Microb Cell Factories 14:30

    Google Scholar 

  • Nguyen H, Pham M, Stelzer EM, Plattner E, Grabherr R, Mathiesen G, Peterbauer CK, Haltrich D, Nguyen TH (2019) Constitutive expression and cell-surface display of a bacterial β-mannanase in Lactobacillus plantarum. Microb Cell Factories 18:76

    Google Scholar 

  • Pfeiler EA, Azcárate-Peril MA, Klaenhammer TR (2007) Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol 189(13):4624–4634

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pouwels PH, Leer RJ (1993) Genetics of lactobacilli: plasmids and gene expression. Antonie Van Leeuwenhoek 64(2):85–107

    PubMed  Google Scholar 

  • Ross W, Gosink K, Salomon J, Igarashi K, Zhou C, Ishihama A, Severinov K, Gourse R (1993) A third recognition element in bacterial promoters: DNA binding by the a subunit of RNA polymerase. Science 262(5138):1407–1413

    PubMed  CAS  Google Scholar 

  • Rud I, Jensen PR, Naterstad K, Axelsson L (2006) A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiol 152(4):1011–1019

    CAS  Google Scholar 

  • Rush C, Hafner L, Timms P (1997) Protein A as a fusion partner for the expression of heterologous proteins in Lactobacillus. Appl Microbiol Biotechnol 47(5):537–542

    PubMed  CAS  Google Scholar 

  • Saarela M, Mogensen G, Fonden R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215

    PubMed  CAS  Google Scholar 

  • Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27(10):946–950

    PubMed  PubMed Central  CAS  Google Scholar 

  • Scheirlinck T, Mahillon J, Joos H, Dahese P, Michiels F (1989) Integration and expression of a-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl Environ Microbiol 55:2130–2137

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt G, Hertel C, Hammes WP (1999) Molecular characterisation of the dnaK operon of Lactobacillus sakei LTH681. Syst Appl Microbiol 22(3):321–328

  • Serrano LM, Molenaar D, Wels M, Teusink B, Bron PA, de Vos WM, Smid EJ (2007) Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microbial Cell Fact 6:29

    Google Scholar 

  • Sheehan VM, Sleator RD, Fitzgerald GF, Hill C (2006) Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72(3):2170–2177

    PubMed  PubMed Central  CAS  Google Scholar 

  • Song X, Huang HE, Xiong Z, Ai L, Yang S (2017) CRISPR-Cas9D10A nickase-assisted genome editing in Lactobacillus casei. Appl Environ Microbiol 83(22):e01259–e01217

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sørvig E, Mathiesen G, Eijsink VGH, Axelsson L, Grönqvist S, Naterstad K (2003) Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum. FEMS Microbiol Lett 229:119–126

  • Sørvig E, Mathiesen G, Naterstad K, Eijsink VG, Axelsson L (2005) High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiol 151:2439–2449

    Google Scholar 

  • Tauer C, Heinl S, Egger E, Heiss S, Grabherr R (2014) Tuning constitutive recombinant gene expression in Lactobacillus plantarum. Microb Cell Factories 13:150

    Google Scholar 

  • Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72(2):211–222

    PubMed  CAS  Google Scholar 

  • Voskuil MI, Chambliss GH (1998) The −16 region of Bacillus subtilis and other Gram-positive bacterial promoters. Nucleic Acids Res 26(15):3584–3590

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wiernasz N, Cornet J, Cardinal M, Pilet MF, Passerini D, Leroi F (2017) Lactic acid bacteria selection for biopreservation as a part of hurdle technology approach applied on seafood. Front Mar Sci 4:119

    Google Scholar 

  • Wu C-M, Lin C-F, Chang Y-C, Chung T-C (2006) Construction and characterization of nisin-controlled expression vectors for use in Lactobacillus reuteri. Biosci Biotechnol Biochem 70(4):757–767

    PubMed  CAS  Google Scholar 

  • Xiong Z-Q, Qiao-Hui Wang Q-H, Ling-Hui Kong L-H (2017) Improving the activity of bile salt hydrolases in Lactobacillus casei based on in silico molecular docking and heterologous expression. J Dairy Sci 100(2):975–980

    PubMed  CAS  Google Scholar 

  • Yebra MJ, Zúñiga M, Beaufils S, Pérez-Martínez G, Deutscher J, Monedero V (2007) Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol. Appl Environ Microbiol 73(12):3850–3858

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yigang XU, Yijing LI (2008) Construction of recombinant Lactobacillus casei efficiently surface displayed and secreted porcine parvovirus VP2 protein and comparison of the immune responses induced by oral immunization. Immunol 124(1):68–75

    CAS  Google Scholar 

  • Zeng Z, Yu R, Zuo F, Zhang B, Peng D, Ma H, Chen S (2016) Heterologous expression and delivery of biologically active exendin-4 by Lactobacillus paracasei L14. PLoS One 11(10):e0165130

    PubMed  PubMed Central  Google Scholar 

  • Zhang S, Xu Z, Qin L, Kong J (2019) Development of strong lactose/galactose-inducible expression system for Lactobacillus plantarum by optimizing promoter. Biochem Eng J 151:107316

    CAS  Google Scholar 

  • Zhao H, Yuan L, Hu K, Liu L, Peng S, Li H, Wang H (2019) Heterologous expression of ctsR from Oenococcus oeni enhances the acid-ethanol resistance of Lactobacillus plantarum. FEMS Microbiol Lett 366:fnz192

    PubMed  CAS  Google Scholar 

  • Zúñiga M, Champomier-Verges M, Zagorec M, Pérez-Martínez G (1998) Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake. J Bacteriol 180(6):4154–4159

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by project RTA2017-00002-00-00 from the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Landete.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peirotén, Á., Landete, J.M. Natural and engineered promoters for gene expression in Lactobacillus species. Appl Microbiol Biotechnol 104, 3797–3805 (2020). https://doi.org/10.1007/s00253-020-10426-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10426-0

Keywords

Navigation