Abstract
Although several bacterial lignin-oxidising enzymes have been discovered in recent years, it is not yet clear whether different lignin-degrading bacteria use similar mechanisms for lignin oxidation and degradation of lignin fragments. Genome sequences of 13 bacterial lignin-oxidising bacteria, including new genome sequences for Microbacterium phyllosphaerae and Agrobacterium sp., were analysed for the presence of lignin-oxidising enzymes and aromatic degradation gene clusters that could be used to metabolise the products of lignin degradation. Ten bacterial genomes contain DyP-type peroxidases, and ten bacterial strains contain putative multi-copper oxidases (MCOs), both known to have activity for lignin oxidation. Only one strain lacks both MCOs and DyP-type peroxidase genes. Eleven bacterial genomes contain aromatic degradation gene clusters, of which ten contain the central β-ketoadipate pathway, with variable numbers and types of degradation clusters for other aromatic substrates. Hence, there appear to be diverse metabolic strategies used for lignin oxidation in bacteria, while the β-ketoadipate pathway appears to be the most common route for aromatic metabolism in lignin-degrading bacteria.
This is a preview of subscription content,
to check access.




References
Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TDH (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50:5096–5107
Akita H, Kimura ZI, Mohd Yusoff MZ, Nakashima N, Hoshino T (2016) Isolation and characterisation of Burkholderia sp. strain CCA53 exhibiting lignolytic potential. SpringerPlus 5:article 596
Arias-Barrau E, Olivera ER, Luengo JM, Fernández C, Galán B, Garcia JL, Diaz E, Miñambres B (2004) The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphewnylacetate in Pseudomonas putida. 186:5062-5077
Armengaud J, Timmis KN, Wittich RM (1999) A functional 4-hydroxysalicylate/ hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1. J Bacteriol 181:3452–3461
Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandic-Mulec I (2011) Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One 6:e25724
Bao W, O'Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260:672–674
Brown ME, Barros T, Chang MCY (2012) Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol 7:2074–2081
Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7
Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011a) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896
Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011b) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotech 22:394–400
Burlingame R, Chapman PJ (1983) Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli. J Bacteriol 155:113–121
Camarero S, Martínez MJ, Martínez AT (2014) Understanding lignin biodegradation for the improved utilization of plant biomass in modern biorefineries. Biofuels Bioprod Biorefin 8:615–625
Chang HK, Zylstra GJ (1998) Novel organization of the genes for phthalate degradation from Burkholderia cepacia DB01. J Bacteriol 180:6529–6537
Chen HP, Chow M, Liu CC, Lau A, Liu J, Eltis LD (2012) Vanillin catabolism in Rhodococcus jostii RHA1. Appl Environ Microbiol 78:586–588
Cha JS, Cooksey DA (1993) Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Appl Environ Microbiol 59:1671–1674
Colabroy KL, Begley TP (2005) Tryptophan catabolism: identification and characterization of a new degradative pathway. J Bacteriol 187:7866–7869
Colpa DI, Fraaije MW, van Bloois E (2014) DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol 41:1–7
Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE (2015) Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119
Denef VJ, Park J, Tsoi TV, Rouillard JM, Zhang H, Wibbenmeyer JA, Verstraete W, Gulari E, Hashsham SA, Tiedje JM (2004) Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 70:4961–4970
Dailey HA, Septer AN, Daugherty L, Thames D, Gerdes S, Stabb EV, Dunn AK, Dailey TA, Phillips JD (2011) The Escherichia coli protein YfeX functions as a porphyrinogen oxidase, not a heme dechelatase. MBio 2:e00248–e00211
Dennis JJ, Zylstra GJ (2004) Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4. J Mol Biol 341:753–768
Eaton RW (1996) P-Cumate catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA carrying the cmt operon. J Bacteriol 178:1351–1362
Gall DL, Kim H, Lu F, Donohue TJ, Noguera DR, Ralph J (2014) Stereochemical features of glutathione-dependent enzymes in the Sphingobium sp. strain SYK-6 β-aryl etherase pathway. J Biol Chem 289:8656–8667
Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385
de Gonzalo G, Colpa DI, Habib MH, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119
Granja-Travez RS, Bugg TDH (2018) Characterisation of multi-copper oxidase CopA from Pseudomonas putida KT2440 and Pseudomonas fluorescens Pf-5: involvement in bacterial lignin oxidation. Arch Biochem Biophys 660:97–107
Granja-Travez RS, Wilkinson RC, Persinoti GF, Squina FM, Fülöp V, Bugg TDH (2018) Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate. FEBS J 285:1684–1700
Harayama S, Mermod N, Rekik M, Lehrbach PR, Timmis KN (1987) Roles of the divergent branches of the meta-cleavage pathway in the degradation of benzoate and substituted benzoates. J Bacteriol 169:558–564
Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590
Huffman DL, Huyett J, Outten FW, Doan PE, Finney LA, Hoffman BM, O'Halloran TV (2002) Spectroscopy of cu (II)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon. Biochemistry 41:10046–10055
Jenkins JR, Cooper RA (1988) Molecular cloning, expression and analysis of the genes of the hoimoprotocatechuate catabolic pathway of Escherichia coli C. J Bacteriol 170:5317–5324
Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett 446:49–54
Kim SJ, Shoda M (1999). Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035
Kim C, Lorenz WW, Hoopes JT, Dean JF (2001) Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J Bacteriol 183:4866–4875
Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB (2008) Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol 79:217–224
Lin L, Cheng Y, Pu Y, Sun S, Li X, Jin M, Pierson EA, Gross DC, Dale BE, Dai SY, Ragauskas AJ, Yuan JS (2016) Systems biology-guided biodesign of consolidated lignin conversion. Green Chem 18:5536–5547
Lin L, Wang X, Cao L, Xu M (2019) Lignin catabolic pathways reveal unique characteristics of dye-decolorizing peroxidases in Pseudomonas putida. Environ Microbiol 21:1847–1863
Linger JG, Vardon DR, Guarneri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chupka G, Strathmann TJ, Pienkos PT, Beckham GT (2014) Lignin valorization through integrated biological funnelling and chemical catalysis. Proc Natl Acad Sci U S A 111:12013–12018
Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE, Gerlt JA (2014) Roles of small laccases from Streptomyces in lignin degradation. Biochemistry 53:4047–4058
Masai E, Ichimura A, Sato Y, Miyauchi K, Katayama Y, Fukuda M (2003) Roles of the enantioselective glutathione S-transferases in cleavage of β-aryl ether. J Bacteriol 185:1768–1775
Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones G, Henriques AO (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277:18849–18859
McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJM, Holt R, Brinkman FSL, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome sequence of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587
Miyazaki K (2005) A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9:415–425
Moraes EC, Alvarez TM, Persinoti GF, Tomazetto G, Brenelli LB, Paixão DAA, Ematsu GC, Aricetti JA, Caldana C, Dixon N, Bugg TDH, Squina FM (2018) Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. Biotechnol Biofuels 11:article 75
Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS (2015) Can laccases catalyze bond cleavage in lignin? Biotechnol Adv 33:13–24
Mycroft Z, Gomis M, Mines P, Law P, Bugg TDH (2015) Biocatalytic conversion of lignin to aromatic dicarboxylic acids in Rhodococcus jostii RHA1 by re-routing aromatic degradation pathways. Green Chem 17:4974–4979
Ogola HJO, Kamiike T, Hashimoto N, Ashida H, Ishikawa T, Shibata H, Sawa Y (2009) Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC7120. Appl Environ Microbiol 75:7509–7518
Ohta Y, Nishi S, Hasegawa R, Hatada Y (2015) Combination of six enzymes of a marine Novosphingobium converts the stereoisomers of β-O-4 lignin model dimers into the respective monomers. Sci Rep 5:article 15105
Ohtsubo Y, Nagata Y, Kimbara K, Takagi M, Ohta A (2000) Expression of the bph genes involved in biphenyl/PCB degradation in Pseudomonas sp. KKS102 induced by the biphenyl degradation intermediate, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. Gene 256:223–228
Otani H, Lee YE, Casabon I, Eltis LD (2014) Characterization of p-hydroxycinnamate catabolism in a soil actinobacterium. J Bacteriol 196:4293–4303
Nordlund I, Powlowski J, Hagström A, Shingler V (1993) Conbservation of structural and regulatory genes for a multi-component phenol hydroxylase within phenol-catabolizing bacteria that utilize a meta-cleavage pathway. Microbiology 139:2695–2703
Persinoti GF, Paixão DAA, Bugg TDH, Squina FM (2018) Genome sequence of Lysinibacillus sphaericus, a lignin-degrading bacterium isolated from municipal solid waste soil. Genome Announc 6:e00353–e00318
Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843
Rahmanpour R, Bugg TDH (2013) Assembly in vitro of Rhodococcus jostii RHA 1 encapsulin and peroxidase DypB to form a nanocompartment. FEBS J 280:2097–2104
Rahmanpour R, Bugg TDH (2015) Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: oxidation of Mn(II) and polymeric lignin by Dyp1B. Arch Biochem Biophys 574:93–98
Rashid GMM, Taylor CR, Liu Y, Zhang X, Rea D, Fülöp V, Bugg TDH (2015) Identification of manganese superoxide dismutase from Sphingobacterium sp. T2 as a novel bacterial enzyme for lignin oxidation. ACS Chem Biol 10:2286–2294
Rashid GMM, Durán-Peña MJ, Rahmanpour R, Sapsford D, Bugg TDH (2017) Delignification and enhanced gas release from soil containing lignocellulose by treatment with bacterial lignin degraders. J Appl Microbiol 123:159–171
Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thöny-Meyer L (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 8:e65633
Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist EA, Sun H, LaButti KM, Scmutz J, Jabbour D, Luo H, Baker SE, Pisabarro AG, Walton JD, Blanchette RA, Henrissat B, Martin F, Cullen D, Hibbett DS, Grigoriev IV (2014) Extensive sampling of basidiomycete genomes demonstrated inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A 111:9923–9928
Roberts SA, Wildner GF, Grass G, Weichsel A, Ambrus A, Rensing C, Montfort WR (2003) A labile regulatory copper ion lies near the T1 copper site in the multicopper oxidase CueO. J Biol Chem 278:31958–31963
Ruijssenaars HJ, Hartmans S (2004) A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Appl Microbiol Biotechnol 65:177–182
Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD, Bugg TDH (2013) Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol 8:2151–2156
Sanchez-Amat A, Lucas-Elío P, Fernández E, García-Borrón JC, Solano F (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta 1547:104–116
Santos A, Mendes S, Brissos V, Martins LO (2014) New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. Appl Microbiol Biotechnol 98:2053–2065
Salvachúa D, Prieto A, Martínez ÁT, Martínez MJ (2013) Characterization of a novel dye-decolorizing peroxidase (DyP)-type enzyme from Irpex lacteus and its application in enzymatic hydrolysis of wheat straw. Appl Environ Microbiol 79:4316–4324
Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23:823–832
Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R, Chen Y, Zheng Y (2013) Characterization and genomic analysis of Kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol Biofuels 6:article 1
Strachan CR, Singh R, Van Insberghe D, Ievdokymenko K, Budwill K, Mohn WW, Eltis LD, Hallam SJ (2014) Metagenomic scaffolds enable combinatorial lignin transformation. Proc Natl Acad Sci U S A 111:10143–10148
Sturm A, Schierhorn A, Lindenstrauss U, Lille H, Brüser T (2006). YcdB from Escherichia coli reveals a novel class of Tat-dependently translocated hemoproteins. J. Biol. Chem. 281:13972–13978
Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M (2007) DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: Asp-171 replaces the distal histidine of classical peroxidases. J Biol Chem 282:36652–36658
Suzuki T, Endo K, Ito M, Tsujibo H, Miyamoto K, Inamori Y (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem 67:2167–2175
Tago K, Sato J, Takesa H, Kawagishi H, Hayatsu M (2005) Characterization of methylhydroquinone-metabolizing oxygenase genes encoded on plasmid in Burkholderia sp. NF100. J Biosci Bioeng 100:517–523
Takami H, Horikoshi K (1999) Re-identification of facultatively alkaliphilic Bacillus sp. C-125 to Bacillus halodurans. Biosci Biotech Biochem 63:943–945
Taylor CR, Hardiman EM, Ahmad M, Sainsbury PD, Norris PR, Bugg TDH (2012) Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J Appl Microbiol 113:521–530
Tian JH, Pourcher AM, Bouchez T, Gelhaye E, Peu P (2014) Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol 98:9527–9544
Vardon DR, Franden MA, Johnson CW, Karp EM, Guarneri MT, Linger JG, Salm MJ, Strathman TJ, Beckham GT (2015) Adipic acid production from lignin. Energy Environ Sci 8:617–628
Yoshida T, Sugano Y (2015) A structural and functional perspective of DyP-type peroxidase family. Arch Biochem Biophys 574:49–55
Zhang PP, Sun JZ, Xie CX, Zhu DC (2017) Lignin degradation by Comamonas serinivorans C35. Microbiol China 44:1131–1137
Youn HD, Hah YC, Kang SO (1995) Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiol Lett 132:183–188
Zhou NY, Fuenmayor SL, Williams PA (2001) Nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J Bacteriol 183:700–708
Acknowledgements
This work was supported by research grants from BBSRC (research grant BB/P01738X/1) and FAPESP (research grant 2015/50590-4), and a PhD studentship (to RSGT) funded by Secretaria de Educacion Superior, Ciencia, Tecnologia e Innovacion (SENESCYT), Ecuador. We thank Brazilian Biorenewable National Laboratory LNBR NGS Sequencing Facility for generating the DNA sequencing of Agrobacterium sp. strain.
Funding
This study was funded by research grants from BBSRC (research grant BB/P01738X/1) and FAPESP (research grant 2015/50590-4), and a PhD studentship (to RSGT) funded by Secretaria de Educacion Superior, Ciencia, Tecnologia e Innovacion (SENESCYT), Ecuador.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(PDF 2601 kb)
Rights and permissions
About this article
Cite this article
Granja-Travez, R.S., Persinoti, G.F., Squina, F.M. et al. Functional genomic analysis of bacterial lignin degraders: diversity in mechanisms of lignin oxidation and metabolism. Appl Microbiol Biotechnol 104, 3305–3320 (2020). https://doi.org/10.1007/s00253-019-10318-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-019-10318-y