Abstract
The worldwide prevalence of type 2 diabetes mellitus (T2DM) is constantly increasing, and it has become a major concern, with several implications for public health, economy, and social well-being. It is well-known that several factors such as lifestyle, increased intake of fat and sugar-rich foods, and host genetics can lead to T2DM. Some recent studies have suggested that the composition of the intestinal microbiota can trigger T2DM. Since then, considerable effort has been made to understand the link between the composition of intestinal microbiota and T2DM, as well as the role of probiotics in modulation of intestinal microbiota. This mini-review summarizes the major findings and discusses the close relationship between intestinal microbiota, probiotics, and T2DM.
This is a preview of subscription content, access via your institution.

References
Ahola AJ, Harjutsalo V, Forsblom C, Freese R, Makimattila S, Groop PH (2017) The self-reported use of probiotics is associated with better glycaemic control and lower odds of metabolic syndrome and its components in type 1 diabetes. J Prob Health 5(4):188. https://doi.org/10.4172/2329-8901.1000188
Alexander C, Swanson KS, Fahey GC, Garleb KA (2019) Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Adv Nutr 1;10(4):576–589. https://doi.org/10.1093/advances/nmz004
Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG, Smirnova N, Bergé M, Sulpice T, Lahtinen S, Ouwehand A, Langella P, Rautonen N, Sansonetti PJ, Burcelin R (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3(9):559–572. https://doi.org/10.1002/emmm.201100159
American Diabetes Association (ADA) (2009) Diagnosis and classification of Diabetes mellitus. Diabetes Care 32(Suppl 1):62–67. https://doi.org/10.2337/dc09-S062
April K, Moher D, Stinson J, Byrne A, White M, Boon H, Duffy CM, Rader T, Vohra S, Tugwell P (2012) Measurement properties of questionnaires assessing complementary and alternative medicine use in pediatrics: A systematic review. PLoS ONE. 7:e39611. https://doi.org/10.1371/journal.pone.0039611
Asemi Z, Zare Z, Shakeri H, Sabihi S-S, Esmaillzadeh A (2013) Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Ann Nutr Metab 63(1–2):1–9. https://doi.org/10.1159/000349922
Bagarolli RA, Tobar N, Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K, Guadagnini D, Prada PO, SantosA SSTO, Saad MJ (2017) Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem 50:16–25. https://doi.org/10.1016/j.jnutbio.2017.08.006
Balakumar M, Prabhu D, Sathishkumar C, Prabu P, Rokana N, Kumar R, Raghavan S, Soundarajan A, Grover S, Batish VK, Mohan V, Balasubramanyam M (2018) Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur J Nutr 1:279–295. https://doi.org/10.1007/s00394-016-1317-7
Battson ML, Lee DM, Weir TL, Gentile CL (2018) The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem 56:1–15. https://doi.org/10.1016/j.jnutbio.2017.12.010
Baxter NT, Lesniak NA, Sinani H, Schloss PD, Koropatkin NM (2019) The glucoamylase inhibitor acarbose has a diet-dependent and reversible effect on the murine gut microbiome. mSphere 4:e00528–e00518. https://doi.org/10.1128/mSphere.00528-18
Bernaola AG, Bada MCA, Carreazo NY, Rojas GRA (2010) Probiotics for treating persistent diarrhoea in children. Cochrane Database Syst Rev (11):CD007401. https://doi.org/10.1002/14651858.CD007401.pub2
Bervoets L, Hoorenbeeck KV, Kortleven I, van-Noten C, Hens N, Vael C, Goossens H, Desager KN, Vankerckhoven V (2013) Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog. 5:10. https://doi.org/10.1186/1757-4749-5-10
Bianchi F, Duque ALRF, Saad SMI, Sivieri K (2018) Gut microbiome approaches to treat obesity in humans. Appl Microbiol Biotechnol 103(3):1081–1094. https://doi.org/10.1007/s00253-018-9570-8
Blaut M, Clavel T (2007) Metabolic diversity of the intestinal microbiota: implications for health and disease. J Nutr 137:751S–755S. https://doi.org/10.1093/jn/137.3.751S
Brandão BPA, Abreu IC, Aimbire F, Higa ME, Casali A, Ferreira FG, Albuquerque RCM, Santos LB, Irigoyen MCC, Casali KR, Cunha ST (2018) Saccharomyces Boulardii attenuates autonomic cardiovascular dysfunction and modulates Inflammatory cytokines in diabetic mice. Diabetes 67(Supplement 1). https://doi.org/10.2337/db18-2365-PUB
Campbell SC, Wisniewski PJ, Noji M, McGuinness LR, Häggblom MM, Lightfoot SA, Joseph LB, Kerkhof LJ (2016) The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice. PLoS ONE 11(3):e0150502. https://doi.org/10.1371/journal.pone.0150502
Caricilli AM, Saad MJA (2013) The Role of Gut Microbiota on Insulin Resistance. Nutrients 5:829–851. https://doi.org/10.3390/nu5030829
Creely SJ, McTernan PG, Kusminski CM, Fisher fM, Da Silva NF, Khanolkar M, Evans M, Harte AL, Kumar S (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 292(3):E740–E747. https://doi.org/10.1152/ajpendo.00302.2006
Dahiya DK, Renuka PM, Shandilya UK, Dhewa T, Kumar N, Kumar S, Puniya AK, Shukla P (2017) Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review. Front Microbiol 8:563. https://doi.org/10.3389/fmicb.2017.00563
Dang F, Jiang Y, Pan R, Zhou Y, Wu S, Wang R, Zhuang K, Zhang W, Li T, Man C (2018) Administration of Lactobacillus paracasei ameliorates type 2 diabetes in mice. Food Funct 9(7):3630–3639. https://doi.org/10.1039/c8fo00081f
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. https://doi.org/10.1038/nature12820
Dugas LR, Lie L, Plange-Rhule J, Bedu-Addo K, Bovet P, Lambert EV, Forrester TE, Luke A, Gilbert JA, Layden BT (2018) Gut microbiota, short chain fatty acids, and obesity across the epidemiologic transition: the METS-Microbiome study protocol. BMC Public Health. 18:978. https://doi.org/10.1186/s12889-018-5879-6
Edwards-Ingram L, Gitsham P, Burton N, Warhurst G, Clarke I, Hoyle D, Oliver SG, Stateva L (2007) Genotypic and physiological characterization of Saccharomyces boulardii, the probiotic strain of Saccharomyces cerevisiae. Appl Environ Microbiol. 73:2458–2467. https://doi.org/10.1128/AEM.02201-06
Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V (2012) Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition 5:539–543. https://doi.org/10.1016/j.nut.2011.08.013
Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, Moulton L, Glawe A, Wang Y, Leone V, Antonopoulos DA, Smith D, Chang EB, Ciancio MJ (2014) Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLOS ONE. 9(3):e92193. https://doi.org/10.1371/journal.pone.0092193
Fijan S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health. b 11(5):4745–4767. https://doi.org/10.3390/ijerph110504745
Firouzi S, Majid HA, Ismail A, Kamaruddin NA, Barakatun-Nisak MY (2016) Effect of multi-strain probiotics (multi-strain microbial cell preparation) on glycemic control and other diabetes-related outcomes in people with type 2 diabetes: a randomized controlled trial. Eur J Nutrition 56(4):1535–1550. https://doi.org/10.1007/s00394-016-1199-8
Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58(7):1509–1517. https://doi.org/10.2337/db08-1637
Hegde S, Lin Y-M, Golovko G, Khanipov K, Cong Y, Savidge T, Fofanov Y, Shi XZ (2018) Microbiota dysbiosis and its pathophysiological significance in bowel obstruction. Sci Rep 8:13044. https://doi.org/10.1038/s41598-018-31033-0
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 11(8):506–514. https://doi.org/10.1038/nrgastro.2014.66
HUMAN MICROBIOME PROJECT C (2012a) A framework for human microbiome research. Nature 486:215–221. https://doi.org/10.1038/nature11209
HUMAN MICROBIOME PROJECT C (2012b) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. https://doi.org/10.1038/nature11234
International Diabetes Federation (IDF) (2017) Diabetes Atlas. Eighth Edition. https://diabetesatlas.org
Kalinkovich A, Livshits G (2019) A cross talk between dysbiosis and gut-associated immune system governs the development of inflammatory arthropathies. Semin Arthritis Rheum (19):30170–30172. https://doi.org/10.1016/j.semarthrit.2019.05.007
Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103. https://doi.org/10.1038/nature12198
Khalili L, Alipour B, Asghari Jafar-Abadi M, Faraji I, Hassanalilou T, Mesgari Abbasi M, Vaghef-Mehrabany E, Alizadeh SM (2019) The effects of Lactobacillus casei on glycemic response, serum sirtuin1 and fetuin-a levels in patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Iran Biomed J 1:68–77. https://doi.org/10.29252/.23.1.68
Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L, Fusek J, Rodrigo L, Kruzliak P (2016) Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab (Lond) 13:14. https://doi.org/10.1186/s12986-016-0067-0
Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, Kyriienko D, Komissarenko I (2018) Effect of alive probiotic on insulin resistance in type 2 diabetes patients: randomized clinical trial. Diabetes Metab Syndr 12:617–624. https://doi.org/10.1016/j.dsx.2018.04.015
Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5(2):e9085. https://doi.org/10.1371/journal.pone.0009085
Lee E, Jung RA, Lee SY, Lee NK, Paik HD, Lim SII (2018) Lactobacillus plantarum strain Ln4 attenuates diet-induced obesity, insulin resistance, and changes in hepatic mRNA levels associated with glucose and lipid metabolism. Nutrients (5):643. https://doi.org/10.3390/nu10050643
Li X, Wang E, Yin B, Fang D, Chen P, Wang G, Zhao J, Zhang H, Chen W (2017) Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef Microbes 3:421–432. https://doi.org/10.3920/BM2016.0167
Lim S, Jeong JJ, Woo KH, Han MJ, Kim DH (2016) Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression. Nutr Res 36(4):337–348. https://doi.org/10.1016/j.nutres.2015.12.001
Lu Y, Fan C, Li P, Lu Y, Chang X, Qi K (2016) Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating g protein-coupled receptors and gut microbiota. Sci Rep 6:37589. https://doi.org/10.1038/srep37589
Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, Altshuler D, Nilsson P, Groop L (2008) Clinical risk factors, DNA variants, and the development of Type 2 Diabetes. N Engl J Med 359:2220–2232. https://doi.org/10.1056/NEJMoa0801869
Martin D (2011) Physical activity benefits and risks on the gastrointestinal system. South Med J 104:831–837. https://doi.org/10.1097/SMJ.0b013e318236c263
Martinell M, Dorkhan M, Stålhammar J, Storm P, Groop L, Gustavsson C (2016) Prevalence and risk factors for diabetic retinopathy at diagnosis (DRAD) in patients recently diagnosed with type 2 diabetes (T2D) or latent autoimmune diabetes in the adult (LADA). J Diabetes Complications 30:1456–1461. https://doi.org/10.1016/j.jdiacomp.2016.08.009
Matsumoto M, Inoue R, Tsukahara T, Ushida K, Chiji H, Matsubara N, Hara H (2008) Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem 72:572–576. https://doi.org/10.1271/bbb.70474
McFarland LV, Evans CT, Goldstein EJC (2018) Strain-specificity and disease-specificity of probiotic efficacy: a systematic review and meta-analysis. Front Med (Lausanne) 5:124. https://doi.org/10.3389/fmed.2018.00124
Mobini R, Tremaroli V, Ståhlman M, Karlsson F, Levin M, Ljungberg M, Sohlin M, Bertéus Forslund H, Perkins R, Bäckhed F, Jansson PA (2017) Metabolic effects of Lactobacillus reuteri DSM 17938 in people with type 2 diabetes: A randomized controlled trial. Diabetes Obes Metab 4:579–589. https://doi.org/10.1111/dom.12861
Newsholme P, Cruzat VF, Keane KN, Carlessi BPI (2016) Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 473:4527–4550. https://doi.org/10.1042/BCJ20160503C
Nyunt O, Wu JY, McGown IN, Harris M, Huynh T, Leong GM, Cowley DM, Cotterill AM (2009) Investigating maturity onset diabetes of the young. Clin Biochem Rev 30:67–74
O’Connor S, Chouinard-Castonguay S, Gagnon C, Rudkowska I (2017) Prebiotics in the management of components of the metabolic syndrome. Maturitas 104:11–18. https://doi.org/10.1016/j.maturitas.2017.07.005
Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M, Bueno SM, Kalergis AM, Riedel CA (2018) intestinal microbiota influences non-intestinal related autoimmune diseases. Front Microbiol 9:432. https://doi.org/10.3389/fmicb.2018.00432
Panwar H, Rashmi HM, Batish VK, Grover S (2013) Probiotics as potential biotherapeutics in the management of type 2 diabetes: Prospects and perspectives. Diabetes Metab Res Rev 29(2):103–112. https://doi.org/10.1002/dmrr.2376
Park KY, Kim B, Hyun CK (2015) Lactobacillus rhamnosus GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice. J Clin Biochem Nutr 56(3):240–246. https://doi.org/10.3164/jcbn.14-116
Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF, Catherine S (2016) Gut microbiota, obesity and diabetes. Post Med J 92:286–300. https://doi.org/10.1136/postgradmedj-2015-133285
Peters BA, Shapiro JA, Church TR, Miller G, Trinh-Shevrin C, Yuen E, Friedlander C, Hayes RB, Ahn J (2018) A taxonomic signature of obesity in a large study of American adults. Scientific Reports 8:9749–9713. https://doi.org/10.1038/s41598-018-28126-1
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang J, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60. https://doi.org/10.1038/nature11450
Rad AH, Abbasalizadeh S, Vazifekhah S, Abbasalizadeh F, Hassanalilou T, Bastani P, Ejtahed HS, Soroush AR, Javadi M, Mortazavian AM, Khalili L (2017) The future of diabetes management by healthy probiotic microorganisms. Cur Diabetes Rev 13(6):582–589. https://doi.org/10.2174/1573399812666161014112515
Razmpoosh E, Javadi A, Ejtahed HS, Mirmiran P, Javadi M, Yousefinejad A (2018) The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: A randomized placebo-controlled trial. Diabetes Met Synd. https://doi.org/10.1016/j.dsx.2018.08.008
Razmpoosh E, Javadi A, Ejtahed HS, Mirmiran P, Javadi M, Yousefinejad A.(2019) The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: A randomized placebo controlled trial. Diabetes Metab Syndr. 13(1):175-182. https://doi.org/10.1007/s00253-019-10156-y10.1016/j.dsx.2018.08.008
Reyes LM, Vázquez RG, Arroyo SMC, Avalos AM, Castillo PAR, Pérez DAC, Terrones IR, Ibáñez NR, Magallanes MMR, Langella P, Humarán LB, Espinosa AA (2016) Correlation between diet and gut bacteria in a population of young adults. Int J Food Sci Nutr 67:470–478. https://doi.org/10.3109/09637486.2016.1162770
Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de los Reyes-Gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185. https://doi.org/10.3389/fmicb.2016.00185
Ritchie ML, Romanuk TN (2012) A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One. 7(4):e34938. https://doi.org/10.1371/journal.pone.0034938
Roager HM, Vogt JK, Kristensen M, LBS H, Ibrugger S, Maerkedahl RB, Bahl MI, Lind MV, Nielsen RL, Frøkiaer H, Gøbel RJ, Landberg R, Ross AB, Brix S, Holck J, Meyer AS, Sparholt MH, Christensen AF, Carvalho V, Hartmann B, Holst JJ, Rumessen JJ, Linneberg A, Sicheritz-Pontén T, Dalgaard MD, Blennow A, Frandsen HL, Villas-Bôas S, Kristiansen K, Vestergaard H, Hansen T, Ekstrøm CT, Ritz C, Nielsen HB, Pedersen OB, Gupta R, Lauritzen L, Licht TR (2017) Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: A randomised cross-over trial. Gut. https://doi.org/10.1136/gutjnl-2017-314786
Sabatino A, Regolisti G, Cosola C, Gesualdo L, Fiaccadori E (2017) Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Curr Diab Rep 17(3):16. https://doi.org/10.1007/s11892-017-0841-z
Sato J, Kanazawa A, Azuma K, Ikeda F, Goto H, Komiya K, Kanno R, Tamura Y, Asahara T, Takahashi T, Nomoto K, Yamashiro Y, Watada H (2017) Probiotic reduces bacterial translocation in type 2 diabetes mellitus: A randomised controlled study. Sci Rep 7(1):12115. https://doi.org/10.1038/s41598-017-12535-9
Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18:190–195. https://doi.org/10.1038/oby.2009.167
Seuring T, Archangelidi O, Suhrcke M (2015) The economic costs of type 2 diabetes: A global systematic review. Pharmacoeconomics. 33(8):811–831. https://doi.org/10.1007/s40273-015-0268-9
Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, Costa-Mattioli M (2019) Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 101(2):246–259.e6. https://doi.org/10.1016/j.neuron.2018.11.018
Stensel D (2010) Exercise, appetite and appetite-regulating hormones: implications for food intake and weight control. Ann Nutr Metab. 57(suppl 2):36–42. https://doi.org/10.1159/000322702
Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via theg-protein–coupled receptor ffar2. Diabetes 61:364–371. https://doi.org/10.2337/db11-1019
Trøseid M, Nestvold TK, Rudi K, Thoresen H, Nielsen EW, Lappegård KT (2013) Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity: evidence from bariatric surgery. Diabetes Care 36(11):3627–3632. https://doi.org/10.2337/dc13-0451
van De Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W (2004) Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 51:143–153. https://doi.org/10.1016/j.femsec.2004.07.014
Van de Wiele T, Van Praet JT, Marzorati M, Dreannan M, Elewaut E. (2016) How the microbiota shapes rheumatic diseases. Nat. Rev. Rheumatol.12:398–411. https://doi.org/10.1038/nrrheum.2016.85
Vancamelbeke M, Vermeire S (2018) The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 11(9):821–834. https://doi.org/10.1080/17474124.2017.1343143
Vera IM, Tapia MS, Noriega-López L, Granados-Portillo O, Guevara-Cruz M, Flores-López A, Avila-Nava A, Fernández ML, Tovar AR, Torres N (2018) A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with type 2 diabetes. Diabetes Metab 2:122–131. https://doi.org/10.1016/j.diabet.2018.09.004
von Scholten BJ, Andresen EN, Sørensen TI, Jess T (2013) Aetiological factors behind adipose tissue inflammation: an unexplored research area. Public Health Nutr. 16(1):27–35. https://doi.org/10.1017/S1368980012000894
Wang X, He G, Peng Y, Zhong W, Wang Y, Zhang B (2015) Sodium butyrate alleviates adipocyte inflammationby inhibiting nlrp3 pathway. Sci Rep 5:12676. https://doi.org/10.1038/srep12676
Wang G, Li X, Zhao J, Zhang H, Chen W (2017) Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food Funct. 8(9):3155–3164. https://doi.org/10.1039/c7fo00593h
White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283:E413–E422. https://doi.org/10.1152/ajpendo.00514.2001
Wiesner P, Choi SH, Almazan F, Benner C, Huang W, Diehl CJ, Gonen A, Butler S, Witztum JL, Glass CK, Miller YI (2010) Low doses of lipopolysaccharide and minimally oxidized low-density lipoprotein cooperatively activate macrophages via nuclear factor kappa B and activator protein-1: possible mechanism for acceleration of atherosclerosis by subclinical endotoxemia. Circ Res. 107(1):56–65. https://doi.org/10.1161/CIRCRESAHA.110.218420
World Health Organization (2016) Global Reports on Diabetes. World Health Organization. WHO Press, Geneva
Xiang Y, Huang G, Shan A, Pan L, Luo S, Yang L, Shi L, Li Q, Leslie RD, Zhou Z (2015) Glutamic acid decarboxylase autoantibodies are dominant but insufficient to identify most Chinese with adult-onset non-insulin requiring autoimmune diabetes: LADA China study 5. Acta Diabetol. 52:1121–1127. https://doi.org/10.1007/s00592-015-0799-8
Acknowledgments
The authors wish to thank Lucas A.R. Tannuri for drawing and editing the figure shown in this article.
Funding
This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
The article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Salgaço, M.K., Oliveira, L.G.S., Costa, G.N. et al. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl Microbiol Biotechnol 103, 9229–9238 (2019). https://doi.org/10.1007/s00253-019-10156-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-019-10156-y
Keywords
- Type 2 diabetes
- Gut microbiota
- Probiotic
- Chronic disease