Abstract
Zearalenone (ZEN) is one of the common mycotoxins with quite high occurrence rate and is harmful to animal and human health. Lactobacillus reuteri is known as a probiotic bacterium with active immune stimulating and high inhibitory activity against pathogenic microorganisms. In this study, we expressed the lactonohydrolase from Rhinocladiella mackenziei CBS 650.93 (RmZHD) in L. reuteri via secretion and surface-display patterns, respectively. Endogenous signal peptides from L. reuteri were first screened to achieve high expression for efficient ZEN hydrolysis. For secretion expression, signal peptide from collagen-binding protein showed the best performance, while the one from fructose-2,6-bisphosphatase worked best for surface-display expression. Both of the engineered strains could completely hydrolyze 5.0 mg/L ZEN in 8 h without detrimental effects on bacterial growth. The acid and bile tolerance assay and anchoring experiment on Caco-2 cells indicated both of the abovementioned engineered strains could survive during digestion and colonize on intestinal tract, in which the surface-displayed strain had a better performance on ZEN hydrolysis. Biodetoxification of model ZEN-contaminated maize kernels showed the surface-displayed L. reuteri strain could completely hydrolyze 2.5 mg/kg ZEN within 4 h under low water condition. The strain could also efficiently detoxify natural ZEN-contaminated corn flour in the in vitro digestion model system. The colonized property, survival capacity, and the efficient hydrolysis performance as well as probiotic functionality make L. reuteri strain an ideal host for detoxifying residual ZEN in vivo, which shows a great potential for application in feed industry.









Similar content being viewed by others
References
Archacka M, Bialas W, Dembczynski R, Olejnik A, Sip A, Szymanowska D, Celinska E, Jankowski T, Olejnik A, Rogodzinska M (2019) Method of preservation and type of protective agent strongly influence probiotic properties of Lactococcus lactis: a complete process of probiotic preparation manufacture and use. Food Chem 274:733–742. https://doi.org/10.1016/j.foodchem.2018.09.033
Bath K, Roos S, Wall T, Jonsson H (2005) The cell surface of Lactobacillus reuteri ATCC 55730 highlighted by identification of 126 extracellular proteins from the genome sequence. FEMS Microbiol Lett 253(1):75–82. https://doi.org/10.1016/j.femsle.2005.09.042
Bermudez-Humaran LG, Langella P, Miyoshi A, Gruss A, Guerra RT, de Oca-Luna RM, Le Loir Y (2002) Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol 68(2):917–922. https://doi.org/10.1128/aem.68.2.917-922.2002
Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert T (2006) Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in gram-positive bacteria. J Mol Biol 362(3):393–402. https://doi.org/10.1016/j.jmb.2006.07.034
Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP, Merriman J, Cortez VS, Caparon MG, Donia MS, Gilfillan S, Cella M, Gordon JI, Hsieh CS, Colonna M (2017) Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8 alpha alpha(+) T cells. Science 357(6353):806–810. https://doi.org/10.1126/science.aah5825
El-Nezami H, Polychronaki N, Salminen S, Mykkanen H (2002) Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative alpha-zearalenol. Appl Environ Microbiol 68(7):3545–3549. https://doi.org/10.1128/aem.68.7.3545-3549.2002
Hahn I, Kunz-Vekiru E, Twaruzek M, Grajewski J, Krska R, Berthiller F (2015) Aerobic and anaerobic in vitro testing of feed additives claiming to detoxify deoxynivalenol and zearalenone. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32(6):922–933. https://doi.org/10.1080/19440049.2015.1023741
Hemarajata P, Gao C, Pflughoeft KJ, Thomas CM, Saulnier DM, Spinler JK, Versalovic J (2013) Lactobacillus reuteri-specific immunoregulatory gene rsiR modulates histamine production and immunomodulation by Lactobacillus reuteri. J Bacteriol 195(24):5567–5576. https://doi.org/10.1128/jb.00261-13
Hilmi HTA, Surakka A, Apajalahti J, Saris PEJ (2007) Identification of the most abundant Lactobacillus species in the crop of 1-and 5-week-old broiler chickens. Appl Environ Microbiol 73(24):7867–7873. https://doi.org/10.1128/aem.01128-07
Hsueh HY, Yueh PY, Yu B, Zhao X, Liu JR (2010) Expression of Lactobacillus reuteri Pg4 collagen-binding protein gene in Lactobacillus casei ATCC 393 increases its adhesion ability to Caco-2 cells. J Agr Food Chem 58(23):12182–12191. https://doi.org/10.1021/jf1035756
Huang S-J, Chen M-J, Yueh P-Y, Yu B, Zhao X, Liu J-R (2011) Display of fibrobacter succinogenes beta-glucanase on the cell surface of Lactobacillus reuteri. J Agr Food Chem 59(5):1744–1751. https://doi.org/10.1021/jf104266x
Kakeya H, Takahashi-Ando N, Kimura M, Onose R, Yamaguchi I, Osada H (2002) Biotransformation of the mycotoxin, zearalenone, to a non-estrogenic compound by a fungal strain of Clonostachys sp. Biosci Biotechnol Biochem 66(12):2723–2726. https://doi.org/10.1271/bbb.66.2723
Kiessling KH, Pettersson H, Sandholm K, Olsen M (1984) Metabolism of aflatoxin, ochratoxin, zearalenone, and 3 trichothecenes by intact rumen fluid, rumen protozoa, and rumen bacteria. Appl Environ Microbiol 47(5):1070–1073
Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, Guimaraes VD, Oliveira MN, Charlier C, Gautier M, Langella P (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact 4(1):2. https://doi.org/10.1186/1475-2859-4-2
Lee A, Cheng KC, Liu JR (2017) Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLoS One 12(8):e0182220. https://doi.org/10.1371/journal.pone.0182220
Lei YP, Zhao LH, Ma QG, Zhang JY, Zhou T, Gao CQ, Ji C (2014) Degradation of zearalenone in swine feed and feed ingredients by Bacillus subtilis ANSB01G. World Mycotoxin J 7(2):143–151. https://doi.org/10.3920/wmj2013.1623
Lim PY, Tan LL, Ow DSW, Wong FT (2017) A propeptide toolbox for secretion optimization of Flavobacterium meningosepticum endopeptidase in Lactococcus lactis. Microb Cell Fact 16(1):221–228. https://doi.org/10.1186/s12934-017-0836-0
Liong MT, Shah NP (2005) Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J Dairy Sci 88(1):55–66. https://doi.org/10.3168/jds.S0022-0302(05)72662-X
Liu F, Yu B (2015) Efficient production of reuterin from glycerol by magnetically immobilized Lactobacillus reuteri. Appl Microbiol Biotechnol 99(11):4659–4666. https://doi.org/10.1007/s00253-015-6530-4
Lizier M, Sarra PG, Cauda R, Lucchini F (2010) Comparison of expression vectors in Lactobacillus reuteri strains. FEMS Microbiol Lett 308(1):8–15. https://doi.org/10.1111/j.1574-6968.2010.01978.x
Lo Curto A, Pitino I, Mandalari G, Dainty JR, Faulks RM, John Wickham MS (2011) Survival of probiotic lactobacilli in the upper gastrointestinal tract using an in vitro gastric model of digestion. Food Microbiol 28(7):1359–1366. https://doi.org/10.1016/j.fm.2011.06.007
Lorenz N, Danicke S, Edler L, Gottschalk C, Lassek E, Marko D, Rychlik M, Mally A (2019) A critical evaluation of health risk assessment of modified mycotoxins with a special focus on zearalenone. Mycotoxin Res 35(1):27–46. https://doi.org/10.1007/s12550-018-0328-z
Ma R, Zhang L, Liu M, Su YT, Xie WM, Zhang NY, Dai JF, Wang Y, Rajput SA, Qi DS, Karrow NA, Sun LH (2018) Individual and combined occurrence of mycotoxins in feed ingredients and complete feeds in China. Toxins 10(3):13. https://doi.org/10.3390/toxins10030113
Macintyre S, Eschbach ML, Mutschler B (1990) Export incompatibility of N-terminal basic residues in a mature polypeptide of Escherichia coli can be alleviated by optimizing the signal peptide. Mol Gen Genet 221(3):466–474
Mally A, Solfrizzo M, Degen GH (2016) Biomonitoring of the mycotoxin Zearalenone: current state-of-the art and application to human exposure assessment. Arch Toxicol 90(6):1281–1292. https://doi.org/10.1007/s00204-016-1704-0
Mathiesen G, Sveen A, Brurberg MB, Fredriksen L, Axelsson L, Eijsink VGH (2009) Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genomics 10:425. https://doi.org/10.1186/1471-2164-10-425
Matsuo Y, Miyoshi Y, Okada S, Satoh E (2012) Receptor-like molecules on human intestinal epithelial cells interact with an adhesion factor from Lactobacillus reuteri. Biosci Microbiota Food Health 31(4):93–102. https://doi.org/10.12938/bmfh.31.93
McCormick SP (2013) Microbial detoxification of mycotoxins. J Chem Ecol 39(7):907–918. https://doi.org/10.1007/s10886-013-0321-0
Mishra V, Prasad DN (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J Food Microbiol 103(1):109–115. https://doi.org/10.1016/j.ijfoodmicro.2004.10.047
Mokoena MP, Chelule PK, Gqaleni N (2005) Reduction of fumonisin B(1) and zearalenone by lactic acid bacteria in fermented maize meal. J Food Prot 68(10):2095–2099. https://doi.org/10.4315/0362-028x-68.10.2095
Morello E, Bermudez-Humaran LG, Llull D, Sole V, Miraglio N, Langella P, Poquet I (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14(1-3):48–58. https://doi.org/10.1159/000106082
Roos S, Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148:433–442. https://doi.org/10.1099/00221287-148-2-433
Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215. https://doi.org/10.1016/s0168-1656(00)00375-8
Salminen S, Isolauri E, Salminen E (1996) Probiotics and stabilisation of the gut mucosal barrier. Asia Pac J Clin Nutr 5(1):53–56
Schaefer L, Auchtung TA, Hermans KE, Whitehead D, Borhan B, Britton RA (2010) The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology 156:1589–1599. https://doi.org/10.1099/mic.0.035642-0
Schatzmayr G, Streit E (2013) Global occurrence of mycotoxins in the food and feed chain: facts and figures. World Mycotoxin J 6(3):213–222. https://doi.org/10.3920/wmj2013.1572
Takahashi-Ando N, Kimura M, Kakeya H, Osada H, Yamaguchi I (2002) A novel lactonohydrolase responsible for the detoxification of zearalenone: enzyme purification and gene cloning. Biochem J 365:1–6. https://doi.org/10.1042/bj20020450
Takahashi-Ando N, Ohsato S, Shibata T, Hamamoto H, Yamaguchi I, Kimura M (2004) Metabolism of zearalenone by genetically modified organisms expressing the detoxification gene from Clonostachys rosea. Appl Environ Microbiol 70(6):3239–3245. https://doi.org/10.1128/aem.70.6.3239-3245.2004
Turner MS, Hafner LM, Walsh T, Giffard PM (2003) Peptide surface display and secretion using two LPXTG-containing surface proteins from Lactobacillus fermentum BR11. Appl Environ Microbiol 69(10):5855–5863. https://doi.org/10.1128/aem.69.10.5855-5863.2003
Vanhoutte I, Audenaert K, De Gelder L (2016) Biodegradation of mycotoxins: tales from known and unexplored worlds. Front Microbiol 7:20. https://doi.org/10.3389/fmicb.2016.00561
Vekiru E, Hametner C, Mitterbauer R, Rechthaler J, Adam G, Schatzmayr G, Krska R, Schuhmacher R (2010) Cleavage of zearalenone by Trichosporon mycotoxinivorans to a novel nonestrogenic metabolite. Appl Environ Microbiol 76(7):2353–2359. https://doi.org/10.1128/aem.01438-09
Velez MP, De Keersmaecker SCJ, Vanderleyden J (2007) Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol Lett 276(2):140–148. https://doi.org/10.1111/j.1574-6968.2007.00908.x
Versantvoort CHM, Oomen AG, Van de Kamp E, Rompelberg CJM, Sips A (2005) Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem Toxicol 43(1):31–40. https://doi.org/10.1016/j.fct.2004.08.007
Walter J, Chagnaud P, Tannock GW, Loach DM, Dal Bello F, Jenkinson HF, Hammes WP, Hertel C (2005) A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of Lactobacillus reuteri in the murine gut. Appl Environ Microbiol 71(2):979–986. https://doi.org/10.1128/aem.71.2.979-986.2005
Walter J, Britton RA, Roos S (2011) Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc Natl Acad Sci U S A 108(Suppl 1):4645–4652. https://doi.org/10.1073/pnas.1000099107
Wu L, Li JJ, Li YH, Li TJ, He QH, Tang YL, Liu HN, Su YT, Yin YL, Liao P (2016) Aflatoxin B-1, zearalenone and deoxynivalenol in feed ingredients and complete feed from different province in China. J Anim Sci Biotechnol 7:10–10. https://doi.org/10.1186/s40104-016-0122-8
Yang WC, Hsu TC, Cheng KC, Liu JR (2017) Expression of the Clonostachys rosea lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone-removing ability. Microb Cell Fact 16(1):69–11. https://doi.org/10.1186/s12934-017-0687-8
Zhang J, Wu WF, Song YF, Hou LG, Li TZ, Guan TZ, Zhang TH, Wang YJ (2019) Homogeneous assay for zearalenone analogues and their docking studies with apo-/holo-estrogen receptors. Anal Methods 11(2):192–199. https://doi.org/10.1039/c8ay01940a
Zheng Y, Liu W, Chen C-C, Hu X, Liu W, Ko T-P, Tang X, Wei H, Huang J-W, Guo R-T (2018) Crystal structure of a mycoestrogen-detoxifying lactonase from Rhinocladiella mackenziei: molecular insight into ZHD substrate selectivity. ACS Catalysis 8(5):4294–4298. https://doi.org/10.1021/acscatal.8600464
Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, mestabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45(1):1–18. https://doi.org/10.1016/j.fct.2006.07.030
Funding
The work was financially supported by Beijing Natural Science Foundation, China (5182021).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interests.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(PDF 138 kb)
Rights and permissions
About this article
Cite this article
Liu, F., Malaphan, W., Xing, F. et al. Biodetoxification of fungal mycotoxins zearalenone by engineered probiotic bacterium Lactobacillus reuteri with surface-displayed lactonohydrolase. Appl Microbiol Biotechnol 103, 8813–8824 (2019). https://doi.org/10.1007/s00253-019-10153-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-019-10153-1


