Skip to main content

Advertisement

Log in

Biodetoxification of fungal mycotoxins zearalenone by engineered probiotic bacterium Lactobacillus reuteri with surface-displayed lactonohydrolase

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Zearalenone (ZEN) is one of the common mycotoxins with quite high occurrence rate and is harmful to animal and human health. Lactobacillus reuteri is known as a probiotic bacterium with active immune stimulating and high inhibitory activity against pathogenic microorganisms. In this study, we expressed the lactonohydrolase from Rhinocladiella mackenziei CBS 650.93 (RmZHD) in L. reuteri via secretion and surface-display patterns, respectively. Endogenous signal peptides from L. reuteri were first screened to achieve high expression for efficient ZEN hydrolysis. For secretion expression, signal peptide from collagen-binding protein showed the best performance, while the one from fructose-2,6-bisphosphatase worked best for surface-display expression. Both of the engineered strains could completely hydrolyze 5.0 mg/L ZEN in 8 h without detrimental effects on bacterial growth. The acid and bile tolerance assay and anchoring experiment on Caco-2 cells indicated both of the abovementioned engineered strains could survive during digestion and colonize on intestinal tract, in which the surface-displayed strain had a better performance on ZEN hydrolysis. Biodetoxification of model ZEN-contaminated maize kernels showed the surface-displayed L. reuteri strain could completely hydrolyze 2.5 mg/kg ZEN within 4 h under low water condition. The strain could also efficiently detoxify natural ZEN-contaminated corn flour in the in vitro digestion model system. The colonized property, survival capacity, and the efficient hydrolysis performance as well as probiotic functionality make L. reuteri strain an ideal host for detoxifying residual ZEN in vivo, which shows a great potential for application in feed industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Funding

The work was financially supported by Beijing Natural Science Foundation, China (5182021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Malaphan, W., Xing, F. et al. Biodetoxification of fungal mycotoxins zearalenone by engineered probiotic bacterium Lactobacillus reuteri with surface-displayed lactonohydrolase. Appl Microbiol Biotechnol 103, 8813–8824 (2019). https://doi.org/10.1007/s00253-019-10153-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10153-1

Keywords

Navigation