Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 21–22, pp 8977–8985 | Cite as

Characterisation of the intestinal microbiota of commercially farmed saltwater crocodiles, Crocodylus porosus

  • Nicky-Lee WillsonEmail author
  • Thi T. H. Van
  • John Lever
  • Robert J. Moore
  • Dragana Stanley
Applied microbial and cell physiology

Abstract

The Australian saltwater crocodile (Crocodylus porosus) industry began commercially in the 1980s, producing skins for export and crocodile meat as a by-product. Industry research has thus far focused on strategies to improve production efficiency. In the current study, we utilised 16S rRNA sequencing to characterise the intestinal microbiome of Australian saltwater crocodiles. Samples were collected from 13 commercially farmed crocodiles from six sample sites along the length of the intestinal tract. The results indicate a similar microbiome composition to that found in the freshwater alligator, with the dominate phyla represented by Firmicutes, primarily Clostridia, and Fusobacteria, which appears to be distinct from mammalian, fish, and other reptile phyla which are generally dominated by Firmicutes and Bacteroidetes. The high abundance of ‘pathogenic’ bacteria, with no apparent consequence to the host’s health, is of great interest and warrants further additional investigation. This will enable expansion of the current understanding of host immune function and how it is modified by host and intestinal microbiome interactions.

Keywords

: Saltwater crocodile Crocodylus porosus Microbiota Gastrointestinal tract 

Notes

Acknowledgements

The authors would like to thank the staff at the Koorana Crocodile Farm and Joshua McIntyre for assistance with sample collection.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The sample collection was approved by the Central Queensland University Animal Ethics Committee, Project Number: / 0000020311

Supplementary material

253_2019_10143_MOESM1_ESM.pdf (70 kb)
ESM 1 (PDF 70 kb)

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402.  https://doi.org/10.1093/nar/25.17.3389 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At Least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736CrossRefGoogle Scholar
  3. Buenviaje GN, Ladds PW, Mel Ville L, Manolis SC (1994) Disease-husbandry associations in farmed crocodiles in Queensland and the Northern Territory. Aust Vet J 71:165–173CrossRefGoogle Scholar
  4. Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Costello EK, Gordon JI, Secor SM, Knight R (2010) Postprandial remodelling of the gut microbiota in Burmese pythons. ISME 4:1375–1385CrossRefGoogle Scholar
  6. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072CrossRefGoogle Scholar
  7. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefGoogle Scholar
  8. Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J (2014) An improved dual-indexing approach for multiplexing 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2:6.  https://doi.org/10.1186/2049-2618-2-6 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Finegold SM, Vaisanen M-L, Molitoris DR, Tomzynski TJ, Song Y, Liu C, Collins MD, Lawson PA (2003) Cetobacterium somerae sp. nov. from human feces and emended description of the genus Cetobacterium. Syst Appl Microbiol 26:177–181.  https://doi.org/10.1078/072320203322346010 CrossRefPubMedGoogle Scholar
  10. Isberg SR, Nicholas FW, Thomson PC, Barker SG, Manolis SC, Moran C (2003) Defining breeding objectives for saltwater crocodile genetic improvement programs. AAABG, Australia v16:166–169Google Scholar
  11. Isberg SR, Thomson PC, Nicholas FW, Barker SG, Moran C (2004) Farmed saltwater crocodiles: a genetic improvement program. Rural Industries Research and Development Corporation, CanberraGoogle Scholar
  12. Isberg SR, Thomson PC, Nicholas FW, Barker SG, Moran C (2005a) Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): II. age at slaughter. J Anim Breed Genet 122:370–377.  https://doi.org/10.1111/j.1439-0388.2005.00549.x CrossRefPubMedGoogle Scholar
  13. Isberg SR, Thomson PC, Nicholas FW, Barker SG, Moran C (2005b) Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): I. reproduction traits. J Anim Breed Genet 122:361–369CrossRefGoogle Scholar
  14. Isberg SR, Shilton C, Thomson PC (2009) Improving Australia’s crocodile industry productivity: understanding runting and survival. Rural Industries Research and Development Corporation, CanberraGoogle Scholar
  15. Jiang H, Ma J-E, Li J, Zhang X, Li L, He N, Liu H, Luo S, Wu Z, Han R, Chen J (2017) Diets alter the gut microbiome of crocodile lizards. Front Microbiol 8(2073). doi: https://doi.org/10.3389/fmicb.2017.02073
  16. Keenan SW, Elsey RM (2015) The good, the bad, and the unknown: microbial symbioses of the American alligator. Integr Comp Biol 55:972–985.  https://doi.org/10.1093/icb/icv006 CrossRefPubMedGoogle Scholar
  17. Keenan SW, Engel AS, Elsey RM (2013) The alligator gut microbiome and implications for archosaur symbioses. Sci Rep 3:2877.  https://doi.org/10.1038/srep02877 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kohl KD, Brun A, Magallanes M, Brinkerhoff J, Laspiur A, Acosta JC, Caviedes-vidal E, Bordenstein SR (2017) Gut microbial ecology of lizards: insights into diversity in the wild, effects of captivity, variation across gut regions and transmission. Mol Ecol 26:1175–1189.  https://doi.org/10.1111/mec.13921 CrossRefPubMedGoogle Scholar
  19. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280.  https://doi.org/10.1007/s004420100716 CrossRefPubMedGoogle Scholar
  20. MacNamara K, Nicholas P, Murphy D, Riedel E, Coulding B, Horsburgh C, Whiting T, Warfield B (2003) Markets for skins and leather from the goat, emu, ostrich, crocodile and camel industries. Rural Industries Research and Development Corporation, CanberraGoogle Scholar
  21. Manolis SC, Webb GJW, Richardson K (2000) Improving the quality of Australian crocodile skins Rural Industries Research and Development Corporation, CanberraGoogle Scholar
  22. McFarland L (1998) Epidemiology, risk factors and treatments for antibiotic-associated diarrhea. Dig Dis 16:292–307CrossRefGoogle Scholar
  23. Mendoza MLZ, Roggenbuck M, Vargas KM, Hansen LH, Brunak S, Gilbert MTP, Sicheritz-Pontén T (2018) Protective role of the vulture facial skin and gut microbiomes aid adaptation to scavenging. Acta Vet Scand 60:61–19.  https://doi.org/10.1186/s13028-018-0415-3 CrossRefGoogle Scholar
  24. Merchant M, Britton A (2006) Characterization of serum complement activity of saltwater (Crocodylus porosus) and freshwater (Crocodylus johnstoni) crocodiles. Comp Biochem Physiol A Mol Integr Physiol 143:488–493CrossRefGoogle Scholar
  25. Meyer F, Paarmann D, D’Souza M, Olson R, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma 9:386.  https://doi.org/10.1186/1471-2105-9-386 CrossRefGoogle Scholar
  26. Peucker SKJ, Davis BM, van Barneveld RJ (2005) Crocodile farming research: hatching to harvest. Rural Industries Research and Development Corporation, CanberraGoogle Scholar
  27. Roggenbuck M, Schnell IB, Blom N, Bælum J, Bertelsen MF, Pontén TS, Sørensen SJ, Gilbert MTP, Graves GR, Hansen LH (2014) The microbiome of New World vultures. Nat Commun 5:5498.  https://doi.org/10.1038/ncomms6498 CrossRefPubMedGoogle Scholar
  28. Shilton C, Brown GP, Chambers L, Benedict S, Davis S, Aumann S, Isberg SR (2014) Pathology of runting in farmed saltwater crocodiles (Crocodylus porosus) in Australia. Vet Pathol 51:1022–1034.  https://doi.org/10.1177/0300985813516642 CrossRefPubMedGoogle Scholar
  29. Tsuchiya C, Sakata T, Sugita H (2008) Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish. Lett Appl Microbiol 46:43–48.  https://doi.org/10.1111/j.1472-765X.2007.02258.x CrossRefPubMedGoogle Scholar
  30. Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion M, Berger B, Krause L (2017) Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions. Bioinformatics 33:782–783.  https://doi.org/10.1093/bioinformatics/btw725 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Future Farming SystemsCentral Queensland UniversityRockhamptonAustralia
  2. 2.School of Animal and Veterinary SciencesThe University of AdelaideRoseworthyAustralia
  3. 3.School of ScienceRMIT UniversityBundooraAustralia
  4. 4.Koorana Crocodile FarmCoowongaAustralia

Personalised recommendations