Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 19, pp 8191–8202 | Cite as

Genome-centered omics insight into the competition and niche differentiation of Ca. Jettenia and Ca. Brocadia affiliated to anammox bacteria

  • Yunpeng Zhao
  • Ying Feng
  • Liming Chen
  • Zhao Niu
  • Sitong LiuEmail author
Environmental biotechnology

Abstract

Although the niche differentiation of anammox bacteria has been extensively observed in a lab-scale reactor, the inherent mechanism for this ecological phenomenon is still elusive. Here, we combined the long-term reactor operation, genome-centered metagenome, and metatranscriptome analyses to gain insight into the substrate competition and niche differentiation of Candidatus Jettenia and Candidatus Brocadia. After 146 days of operation, we found the anammox bacterial population shifted from Ca. Jettenia to Ca. Brocadia in the immobilization-anaerobic baffled reactor (I-ABR) with the ammonium and nitrite concentrations of 30 mg/L. Importantly, the genome and transcript comparisons of Ca. Jettenia and Ca. Brocadia showed that Ca. Brocadia harbored more complete function in cell chemotaxis, flagellar assembly, and two-component system and more redundant function in nitrite reduction, in which the genes were also highly expressed. Ca. Brocadia out-competed Ca. Jettenia at the mainstream condition. Meanwhile, though the highest biomass concentration led to the highest nitrogen removal rate (NRR) in the first compartment (C1), the competition of Ca. Jettenia and Ca. Brocadia could also affect the NRR of different compartments through affecting the bacterial activity. Substrate competition of anammox bacteria led to higher transcript activity of Ca. Jettenia and Ca. Brocadia in the second (C2) and fourth (C4) compartments, respectively. Further, high transcript activity of Ca. Brocadia led to the higher NRR in C4. A comparison of metabolic potential based on the metagenome-assembled genome adds a different dimension for understanding the discrepantly physiological characteristics and competition of anammox bacteria for wastewater treatment.

Keywords

Anammox bacteria Genome-centered omics Genome comparison Competition Niche differentiation 

Notes

Funding

This study was financially supported by the National Natural Science Foundations of China (Nos. 51878008 and 91647211).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical statement

This article does not contain any studies involving human participants or animals performed by any of the authors.

Supplementary material

253_2019_10040_MOESM1_ESM.pdf (724 kb)
ESM 1 (PDF 724 kb)

References

  1. Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31(6):533–538.  https://doi.org/10.1038/nbt.2579 CrossRefGoogle Scholar
  2. Ali M, Oshiki M, Rathnayake L, Ishii S, Satoh H, Okabe S (2015) Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads. Water Res 79:147–157.  https://doi.org/10.1016/j.watres.2015.04.024 CrossRefGoogle Scholar
  3. Ali M, Shaw DR, Zhang L, Haroon MF, Narita Y, Emwas AH, Saikaly PE, Okabe S (2018) Aggregation ability of three phylogenetically distant anammox bacterial species. Water Res 143:10–18.  https://doi.org/10.1016/j.watres.2018.06.007 CrossRefGoogle Scholar
  4. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genomics 12:402.  https://doi.org/10.1186/1471-2164-12-402 CrossRefGoogle Scholar
  5. Allard MF, Schönekess BO, Henning SL, English DR, Lopaschuk GD, Allard F, Schonekess B, Tg A (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol Heart Circ Physiol 267:H742–H750.  https://doi.org/10.1152/ajpheart.1994.267.2.H742 CrossRefGoogle Scholar
  6. Anders S, Pyl PT, Huber W (2015) HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169.  https://doi.org/10.1093/bioinformatics/btu638 CrossRefGoogle Scholar
  7. APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, New YorkGoogle Scholar
  8. Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219.  https://doi.org/10.3389/fmicb.2014.00219 CrossRefGoogle Scholar
  9. Boyce JR, Miller RV (1982) Motility as a selective force in the reversion of cystic fibrosis-associated mucoid Pseudomonas aeruginosa to the nonmucoid phenotype in culture. Infect Immun 37(2):840–844.  https://doi.org/10.1016/j.matlet.2007.01.088 Google Scholar
  10. Cao S, Du R, Li B, Ren N, Peng Y (2016) High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater. Appl Microbiol Biotechnol 100:6457–6467.  https://doi.org/10.1007/s00253-016-7427-6 CrossRefGoogle Scholar
  11. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefGoogle Scholar
  12. Case TJ, Gilpin ME (1974) Interference competition and niche theory. Proc Natl Acad Sci U S A 71(8):3073–3077.  https://doi.org/10.1073/pnas.71.8.3073 CrossRefGoogle Scholar
  13. Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM, Eisen JA (2014) PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2:e243.  https://doi.org/10.7717/peerj.243 CrossRefGoogle Scholar
  14. Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 274(25):17410–17416.  https://doi.org/10.1074/jbc.274.25.17410 CrossRefGoogle Scholar
  15. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10(8):538–550.  https://doi.org/10.1038/nrmicro2832 CrossRefGoogle Scholar
  16. Feng Y, Zhao Y, Guo Y, Liu S (2018) Microbial transcript and metabolome analysis uncover discrepant metabolic pathways in autotrophic and mixotrophic anammox consortia. Water Res 128:402–411.  https://doi.org/10.1016/j.watres.2017.10.069 CrossRefGoogle Scholar
  17. Guerrero J, Guisasola A, Baeza JA (2011) The nature of the carbon source rules the competition between PAO and denitrifiers in systems for simultaneous biological nitrogen and phosphorus removal. Water Res 45(16):4793–4802.  https://doi.org/10.1016/j.watres.2011.06.019 CrossRefGoogle Scholar
  18. Guo J, Peng Y, Fan L, Zhang L, Ni BJ, Kartal B, Feng X, Jetten MSM, Yuan Z (2016) Metagenomic analysis of anammox communities in three different microbial aggregates. Environ Microbiol 18:2979–2993.  https://doi.org/10.1111/1462-2920.13132 CrossRefGoogle Scholar
  19. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25.  https://doi.org/10.1038/nrmicro2259 CrossRefGoogle Scholar
  20. Hira D, Toh H, Migita CT, Okubo H, Nishiyama T, Hattori M, Furukawa K, Fujii T (2012) Anammox organism KSU-1 expresses a NirK-type copper-containing nitrite reductase instead of a NirS-type with cytochrome cd1. FEBS Lett 586(11):1658–1663.  https://doi.org/10.1016/j.febslet.2012.04.041 CrossRefGoogle Scholar
  21. Huang YT, Chen SS, Lee PH, Bae J (2013) Microbial community and population dynamics of single-stage autotrophic nitrogen removal for dilute wastewater at the benchmark oxygen rate supply. Bioresour Technol 147:649–653.  https://doi.org/10.1016/j.biortech.2013.08.081 CrossRefGoogle Scholar
  22. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11(1):119.  https://doi.org/10.1186/1471-2105-11-119 CrossRefGoogle Scholar
  23. John JSt (2011) SeqPrep: tool for stripping adaptors and/or merging paired reads with overlap into single reads. Available at https://github.com/jstjohn/SeqPrep. Accessed Oct 2018
  24. Joshi NA, Fass JN (2011) A sliding-window, adaptive, quality-based trimming tool for FastQ files. Available at https://github.com/najoshi/sickle.  https://doi.org/10.1155/2014/493825. Accessed Oct 2018
  25. Kang DD, Froula J, Egan R, Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165.  https://doi.org/10.7717/peerj.1165 CrossRefGoogle Scholar
  26. Kartal B, Rattray J, Niftrik LAVA, van de Vossenberg JC, Schmid MI, Webb R, Stefan Schouten A, Fuerst J, Sinninghe Damsté JSM, Jetten M, Strous M (2007) CandidatusAnammoxoglobus propionicusʼ a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 30:39–49.  https://doi.org/10.1016/j.syapm.2006.03.004 CrossRefGoogle Scholar
  27. Kartal B, Van Niftrik L, Rattray J, Van De Vossenberg JLCM, Schmid MC, Sinninghe Damsté J, Jetten MSM, Strous M (2008) CandidatusBrocadia fulgidaʼ: An autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol 63:46–55.  https://doi.org/10.1111/j.1574-6941.2007.00408.x CrossRefGoogle Scholar
  28. Klappenbach JA, Dunbar JM, Thomas M, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333.  https://doi.org/10.1128/AEM.66.4.1328-1333 CrossRefGoogle Scholar
  29. Kopylova E, Noé L, Touzet H (2012) SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28(24):3211–3217.  https://doi.org/10.1093/bioinformatics/bts611 CrossRefGoogle Scholar
  30. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caproraso JG, Knight R (2012) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Microbiol 27(1):1E–5E.  https://doi.org/10.1002/9780471729259.mc01e05s27 Google Scholar
  31. Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326.  https://doi.org/10.1038/nrmicro1857 CrossRefGoogle Scholar
  32. Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM (2014) Full-scale partial nitritation/anammox experiences - an application survey. Water Res 55:292–303.  https://doi.org/10.1016/j.watres.2014.02.032 CrossRefGoogle Scholar
  33. Laureni M, Falås P, Robin O, Wick A, Weissbrodt DG, Nielsen JL, Ternes TA, Morgenroth E, Joss A (2016) Mainstream partial nitritation and anammox: Long-term process stability and effluent quality at low temperatures. Water Res 101:628–639.  https://doi.org/10.1016/j.watres.2016.05.005 CrossRefGoogle Scholar
  34. Lawson CE, Wu S, Bhattacharjee AS, Hamilton JJ, McMahon KD, Goel R, Noguera DR (2017) Metabolic network analysis reveals microbial community interactions in anammox granules. Nat Commun 8:15416.  https://doi.org/10.1038/ncomms15416 CrossRefGoogle Scholar
  35. Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103.  https://doi.org/10.1099/ijsem.0.000760 CrossRefGoogle Scholar
  36. Lin X, Wang Y, Ma X, Yan Y, Wu M, Bond PL, Guo J (2018) Evidence of differential adaptation to decreased temperature by anammox bacteria. Environ Microbiol 20:3514–3528.  https://doi.org/10.1111/1462-2920.14306 CrossRefGoogle Scholar
  37. Liu W, Yang D, Chen W, Gu X (2017) High-throughput sequencing-based microbial characterization of size fractionated biomass in an anoxic anammox reactor for low-strength wastewater at low temperatures. Bioresour Technol 231:45–52.  https://doi.org/10.1016/j.biortech.2017.01.050 CrossRefGoogle Scholar
  38. Ljungdhal LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450.  https://doi.org/10.1146/annurev.mi.40.100186.002215 CrossRefGoogle Scholar
  39. Martínez-Núnez MA, Pérez-Rueda E, Gutiérrez-Ríos RM, Merino E (2010) New insights into the regulatory networks of paralogous genes in bacteria. Microbiol 156:14–22.  https://doi.org/10.1099/mic.0.033266-0 CrossRefGoogle Scholar
  40. Marx RB, Aitken MD (2000) Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ Sci Technol 34:3379–3383.  https://doi.org/10.1021/es000904k CrossRefGoogle Scholar
  41. Moitinho-Silva L, Díez-Vives C, Batani G, Esteves AIS, Jahn MT, Thomas T (2017) Integrated metabolism in sponge-microbe symbiosis revealed by genome-centered metatranscriptomics. ISME J 11:1651–1666.  https://doi.org/10.1038/ismej.2017.25 CrossRefGoogle Scholar
  42. Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S (2011) Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinicaʼ. Microbiology 157(6):1706–1713.  https://doi.org/10.1099/mic.0.048595-0 CrossRefGoogle Scholar
  43. Oshiki M, Satoh H, Okabe S (2016) Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ Microbiol 18:2784–2796.  https://doi.org/10.1111/1462-2920.13134 CrossRefGoogle Scholar
  44. Oshiki M, Mizuto K, Kimura ZI, Kindaichi T, Satoh H, Okabe S (2017) Genetic diversity of marine anaerobic ammonium-oxidizing bacteria as revealed by genomic and proteomic analyses of ‘Candidatus Scalindua japonicaʼ. Environ Microbiol Rep 9:550–561.  https://doi.org/10.1111/1758-2229.12586 CrossRefGoogle Scholar
  45. Pande S, Merker H, Bohl K, Reichelt M, Schuster S, De Figueiredo LF, Kaleta C, Kost C (2014) Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J 8(5):953–962.  https://doi.org/10.1038/ismej.2013.211 CrossRefGoogle Scholar
  46. Park H, Rosenthal A, Jezek R, Ramalingam K, Fillos J, Chandran K (2010) Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities. Water Res 44:5005–5013.  https://doi.org/10.1016/j.watres.2010.07.022 CrossRefGoogle Scholar
  47. Park H, Sundar S, Ma Y, Chandran K (2015) Differentiation in the microbial ecology and activity of suspended and attached bacteria in a nitritation-anammox process. Biotechnol Bioeng 112:272–279.  https://doi.org/10.1002/bit.25354 CrossRefGoogle Scholar
  48. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055.  https://doi.org/10.1101/gr.186072.114 CrossRefGoogle Scholar
  49. Peng Y, Leung HCM, Yiu SM, Chin FYL (2012) IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428.  https://doi.org/10.1093/bioinformatics/bts174 CrossRefGoogle Scholar
  50. Reino C, Suárez-Ojeda ME, Pérez J, Carrera J (2018) Stable long-term operation of an upflow anammox sludge bed reactor at mainstream conditions. Water Res 128:331–340.  https://doi.org/10.1016/j.watres.2017.10.058 CrossRefGoogle Scholar
  51. Salazar ME, Laub MT (2015) Temporal and evolutionary dynamics of two-component signaling pathways. Curr Opin Microbiol 24:7–14.  https://doi.org/10.1016/j.mib.2014.12.003 CrossRefGoogle Scholar
  52. Saxena J, Tanner RS (2011) Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J Ind Microbiol Biotechnol 38:513–521.  https://doi.org/10.1007/s10295-010-0794-6 CrossRefGoogle Scholar
  53. Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249:73–74.  https://doi.org/10.1038/249073a0 CrossRefGoogle Scholar
  54. Speth DR, In’t Zandt MH, Guerrero-Cruz S, Dutilh BE, Jetten MSM (2016) Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nat Commun 7:11172.  https://doi.org/10.1038/ncomms11172 CrossRefGoogle Scholar
  55. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJ, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MS, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794.  https://doi.org/10.1038/nature04647 CrossRefGoogle Scholar
  56. Tang X, Guo Y, Jiang B, Liu S (2018a) Metagenomic approaches to understanding bacterial communication during the anammox reactor start-up. Water Res 136:95–103.  https://doi.org/10.1016/j.watres.2018.02.054 CrossRefGoogle Scholar
  57. Tang X, Guo Y, Wu S, Chen L, Tao H, Liu S (2018b) Metabolomics uncovers the regulatory pathway of acyl-homoserine lactones based quorum sensing in anammox consortia. Environ Sci Technol 52:2206–2216.  https://doi.org/10.1021/acs.est.7b05699 CrossRefGoogle Scholar
  58. Van De Graaf AA, De Bruijn P, Robertson LA, Jetten MM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142(8):2187–2196.  https://doi.org/10.1099/13500872-142-8-2187 CrossRefGoogle Scholar
  59. Van Der Star WRL, Miclea AI, Van Dongen UGJM, Muyzer G, Picioreanu C, Van Loosdrecht MCM (2008) The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng 101:286–294.  https://doi.org/10.1002/bit.21891 CrossRefGoogle Scholar
  60. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033.  https://doi.org/10.1126/science.1160809 CrossRefGoogle Scholar
  61. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mole Cell Bio 5:1024–1037.  https://doi.org/10.1038/nrm1524 CrossRefGoogle Scholar
  62. Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131:281–285.  https://doi.org/10.1007/s12064-012-0162-3 CrossRefGoogle Scholar
  63. Wang Z, Dong W, Hu X, Sun T, Wang T, Sun Y (2017) Low energy consumption vortex wave flow membrane bioreactor. Water Sci Technol 76(9):2465–2472.  https://doi.org/10.2166/wst.2017.400 CrossRefGoogle Scholar
  64. Wang D, Wang G, Yang F, Liu C, Kong L, Liu Y (2018) Treatment of municipal sewage with low carbon-to-nitrogen ratio via simultaneous partial nitrification, anaerobic ammonia oxidation, and denitrification (SNAD) in a non-woven rotating biological contactor. Chemosphere 208:854–861.  https://doi.org/10.1016/j.chemosphere.2018.06.061 CrossRefGoogle Scholar
  65. Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14(9):2457–2466.  https://doi.org/10.1111/j.1462-2920.2012.02799.x CrossRefGoogle Scholar
  66. Xue Y, Chen H, Yang JR, Liu M, Huang B, Yang J (2018) Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J 12:2263–2277.  https://doi.org/10.1038/s41396-018-0159-0 CrossRefGoogle Scholar
  67. Zengler K, Zaramela LS (2018) The social network of microorganisms - how auxotrophies shape complex communities. Nat Rev Microbiol 16:383–390.  https://doi.org/10.1038/s41579-018-0004-5 CrossRefGoogle Scholar
  68. Zhang L, Narita Y, Gao L, Ali M, Oshiki M, Ishii S, Okabe S (2017a) Microbial competition among anammox bacteria in nitrite-limited bioreactors. Water Res 125:249–258.  https://doi.org/10.1016/j.watres.2017.08.052 CrossRefGoogle Scholar
  69. Zhang L, Narita Y, Gao L, Ali M, Oshiki M, Okabe S (2017b) Maximum specific growth rate of anammox bacteria revisited. Water Res 116:296–303.  https://doi.org/10.1016/j.watres.2017.03.027 CrossRefGoogle Scholar
  70. Zhao Y, Feng Y, Li J, Guo Y, Chen L, Liu S (2018a) Insight into the aggregation capacity of anammox consortia during reactor start-up. Environ Sci Technol 52:3685–3695.  https://doi.org/10.1021/acs.est.7b06553 CrossRefGoogle Scholar
  71. Zhao Y, Liu S, Jiang B, Feng Y, Zhu T, Tao H, Tang X, Liu S (2018b) Genome-centered metagenomics analysis reveals the symbiotic organisms possessing ability to cross-feed with anammox bacteria in anammox consortia. Environ Sci Technol 52:11285–11296.  https://doi.org/10.1021/acs.est.8b02599 CrossRefGoogle Scholar
  72. Zhou X, Liu X, Huang S, Cui B, Liu Z, Yang Q (2018) Total inorganic nitrogen removal during the partial/complete nitrification for treating domestic wastewater: removal pathways and main influencing factors. Bioresour Technol 256:285–294.  https://doi.org/10.1016/j.biortech.2018.01.131 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yunpeng Zhao
    • 1
    • 2
    • 3
  • Ying Feng
    • 1
    • 2
    • 3
  • Liming Chen
    • 1
    • 2
    • 3
  • Zhao Niu
    • 1
    • 2
    • 3
  • Sitong Liu
    • 1
    • 2
    • 3
    Email author
  1. 1.College of Environmental Sciences and EngineeringPeking UniversityBeijingChina
  2. 2.Key Laboratory of Water and Sediment SciencesMinistry of Education of ChinaBeijingChina
  3. 3.International Joint Laboratory for Regional Pollution Control (IJRC)BeijingChina

Personalised recommendations