Skip to main content
Log in

Enhancement of antroquinonol and antrodin C productions via in situ extractive fermentation of Antrodia camphorata S-29

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study describes the application of in situ extractive fermentation (ISEF) to increase the yields of antroquinonol (AQ) and antrodin C (AC) from Antrodia camphorata S-29. In initial screening experiments, nine solvents were tested to identify the most suitable extractant for the in situ extraction of AQ and AC. These solvents included n-tetradecane, n-dodecane, n-decane, heavy paraffin, light paraffin, oleyl alcohol, oleic acid, butyl oleate, and isopropyl myristate. Of these, oleic acid was the most suitable solvent for the in situ extraction of AQ and AC. The use of oleic acid as an in situ extractant significantly improved AQ and AC productions, which were approximately 5-fold and 8-fold that of the control, respectively. The recovered oleic acid was treated with a silica gel solid-phase extraction column, which was able to rapidly adsorb the bioactive metabolites. The separated solvent hardly contained fermentation products and could be directly reused in ISEF. AQ and AC were obtained with purities of over 75% by silica gel column chromatography. The recoveries of AQ and AC reached 70.7 ± 0.8% and 81.5 ± 1.2%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ao ZH, Xu ZH, Lu ZM, Xu HY, Zhang XM, Dou WF (2009) Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J Ethnopharmacol 121:194–212

    Article  Google Scholar 

  • Cao XL, Xu J, Bai G, Zhang H, Liu Y, Xiang JF, Tang YL (2013) Isolation of anti-tumor compounds from the stem bark of Zanthoxylum ailanthoides Sieb. & Zucc. by silica gel column and counter-current chromatography. J Chromatogr B 929:6–10

    Article  CAS  Google Scholar 

  • Chen CC, Shiao YJ, Lin RD, Shao YY, Lai MN, Lin CC, Ng LT, Kuo YH (2006) Neuroprotective diterpenes from the fruiting body of Antrodia camphorata. J Nat Prod 69(4):689–691

    Article  CAS  Google Scholar 

  • Chen YC, Chiu HL, Chao CY, Lin WH, Chao LK, Huang GH, Kuo YH (2013) New anti-inflammatory aromatic components from Antrodia camphorata. Int J Mol Sci 14:4629–4639

    Article  CAS  Google Scholar 

  • Chiang PC, Lin SC, Pan SL, Kuo CH, Tsai IL, Kuo MT, Wen WC, Chen P, Guh JH (2010) Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways. Biochem Pharmacol 79(2):162–171

    Article  CAS  Google Scholar 

  • Dadgar AM, Foutch GL (1985) The evaluation of solvents for the recovery of Clostridium fermentation products by liquid-liquid extraction. Biotechnol Bioeng Symp 15:612–620

    Google Scholar 

  • Geethangili M, Tzeng YM (2009) Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid Based Complement Altern Med 2011:212641

    Google Scholar 

  • Giridhar R, Srivastava AK (2000) Productivity enhancement in L-sorbose fermentation using oxygen vector. Enzyme Microb Technol 27:537–541

    Article  CAS  Google Scholar 

  • Groot WJ, Soedjak PB, van der Lans RGJM, Luyben KAM (1990) Butanol recovery from fermentations by liquid-liquid extraction and membrane solvent extraction. Bioprocess Eng 5(5):203–216

    Article  CAS  Google Scholar 

  • Huang JS, Chang HC, Li EIC, Huang TM, Su YH, Wang KC (2006) Enhancement of hepatoprotective efficacy of Antrodia camphorata by Chinese tradition medicine. J Gastroen Hepatol 21:A234

    Google Scholar 

  • Huang Y, Lin X, Qiao X, Ji S, Liu K, Yeh C, Tzeng Y, Guo D, Ye M (2014) Antcamphins A–L, ergostanoids from Antrodia camphorata. J Nat Prod 77:118–124

    Article  CAS  Google Scholar 

  • Inoue A, Horikoshi K (1989) A Pseudomonas thrives in high-concentrations of toluene. Nature 338(6212):264–266

    Article  CAS  Google Scholar 

  • Jamshidi AM, Sohrabi M, Vahabzadeh F, Bonakdarpour B (2001) Studies on the hydrodynamic behavior and mass transfer in a down-flow jet loop reactor with a coaxial draft tube. J Chem Technol Biot 76(1):39–46

    Article  CAS  Google Scholar 

  • Ju LK, Lee JF, Armiger WB (1991) Effect of the interfacial surfactant layer on oxygen transfer through the oil/water phase boundary in perfluorocarbon emulsions. Biotechnol Bioeng 37(6):505–511

    Article  CAS  Google Scholar 

  • Kim J, Iannotti EL, Bajpai R (1999) Extractive recovery of products from fermentation broths. Biotechnol Bioprocess Eng 4:1–11

    Article  CAS  Google Scholar 

  • Kumar KJS, Chu FH, Hsieh HW, Liao JW, Li WH, Lin JCC, Shaw JF, Wang SY (2011) Antroquinonol from ethanolic extract of mycelium of Antrodia cinnamomea protects hepatic cells from ethanol-induced oxidative stress through Nrf-2 activation. J Ethno-pharmacol 136:168–177

    Article  CAS  Google Scholar 

  • Liu YL, Di X, Liu XC, Shen WJ, Leung KSY (2010) Development of a LC–MS/MS method for the determination of antrodin B and antrodin C from Antrodia camphorata extract in rat plasma for pharmacokinetic study. J Pharm Biomed Anal 53:781–784

    Article  CAS  Google Scholar 

  • Lu MC, Mohamed ES, Wu TY, Du YC, Chang TT, Chen CF, Hsu YM, Lai KH, Chiu CP, Chang FR, Wu YC (2013) Recent research and development of Antrodia cinnamomea. Pharmacol Ther 139:124–156

    Article  CAS  Google Scholar 

  • Marques DAV, Torres BR, Porto ALP, Junior AP, Converti A (2009) Comparison of oxygen mass transfer coefficient in simple and extractive fermentation systems. Biochem Eng J 47:122–126

    Article  Google Scholar 

  • Nakamura N, Hirakawa A, Gao JJ, Kakuda H, Shiro M, Komatsu Y, Sheu CC, Hattori M (2004) Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line. J Nat Prod 67:46–48

    Article  CAS  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331

    Article  CAS  Google Scholar 

  • Pandey SK, Banik RM (2011) Extractive fermentation for enhanced production of alkaline phosphatase from Bacillus licheniformis MTCC 1483 using aqueous two-phase systems. Bioresour Technol 102:4226–4231

    Article  CAS  Google Scholar 

  • Phuong DT, Ma CM, Hattori M, Jin JS (2009) Inhibitory effects of antrodins A–E from Antrodia cinnamomea and their metabolites on hepatitis C virus protease. Phytother Res 23:582–584

    Article  CAS  Google Scholar 

  • Rols JL, Goma G (1991) Enhanced oxygen transfer rates in fermentation using soybean oil-in-water dispersions. Biotechnol Lett 13:7–12

    Article  CAS  Google Scholar 

  • Rols JL, Condoret JS, Fonade C, Goma G (1990) Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol Bioeng 35(4):427–435

    Article  CAS  Google Scholar 

  • Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153(5):263–268

    Article  CAS  Google Scholar 

  • Stark D, von Stockar U (2003) In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. Adv Biochem Eng Biotechnol 80:149–179

    CAS  PubMed  Google Scholar 

  • Sun YJ, Sun YS, Chen H, Hao ZY, Wang JM, Guan YB, Zhang YL, Feng WS, Zheng XK (2014) Isolation of two new prenylated flavonoids from Sinopodophyllum emodi fruit by silica gel column and high-speed counter-current chromatography. J Chromatogr B 969:190–198

    Article  CAS  Google Scholar 

  • Tang DS, Zhang L, Chen HL, Liang YR, Lu JL, Liang HL, Zheng XQ (2007) Extraction and purification of solanesol from tobacco (I). Extraction and silica gel column chromatography separation of solanesol. Sep Purif Technol 56:291–295

    Article  CAS  Google Scholar 

  • Tsai PY, Ka SM, Chao TK, Chang JM, Lin SH, Li CY, Kuo MT, Chen P, Chen A (2011) Antroquinonol reduces oxidative stress by enhancing the Nrf2 signaling pathway and inhibits inflammation and sclerosis in focal segmental glomerulosclerosis mice. Free Radic Biol Med 50:1503–1516

    Article  CAS  Google Scholar 

  • Urlaub J, Norwig J, Schollmayer C, Holzgrabe U (2019) 1H NMR analytical characterization of mineral oil hydrocarbons (PARAFFINS) for pharmaceutical use. J Pharmaceut Biomed 169:41–48

    Article  CAS  Google Scholar 

  • Wang HC, Chu FH, Chien SC, Liao JW, Hsieh HW, Li WH, Lin CC, Shaw JF, Kuo YH, Wang SY (2013) Establishment of the metabolite profile for an Antrodia cinnamomea health food product and investigation of its chemoprevention activity. J Agric Food Chem 61:8556–8564

    Article  CAS  Google Scholar 

  • Wu SH, Ryvarden L (1997) Antrodia camphorata (‘niu-chang-chih’), new combination of a medicinal fungus in Taiwan. Bot Bull Acad Sinica Taipei 38:273–276

    Google Scholar 

  • Wu MD, Cheng MJ, Wang BC, Yech YJ, Lai JT, Kuo YH, Yuan GF, Chen IS (2008) Maleimide and maleic anhydride derivatives from the mycelia of Antrodia cinnamomea and their nitric oxide inhibitory activities in macrophages. J Nat Prod 71:1258–1261

    Article  CAS  Google Scholar 

  • Xia YJ, Chen Y, Liu XF, Zhou X, Wang ZC, Wang GQ, Xiong ZQ, Ai LZ (2018) Enhancement of antroquinonol production during batch fermentation using pH control coupled with an oxygen vector. J Sci Food Agr 91:2463–2470

    Article  Google Scholar 

  • Xu YN, Zhong JJ (2012) Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum. Biotechnol Adv 30:1301–1308

    Article  CAS  Google Scholar 

  • Zhang H, Xia YJ, Wang YL, Zhang BB, Xu GR (2013) Coupling use of surfactant and in situ extractant for enhanced production of Antrodin C by submerged fermentation of Antrodia camphorata. Biochem Eng J 79:194–199

    Article  CAS  Google Scholar 

  • Zhao Y, Ouyang XP, Chen J, Zhao LS, Qiu XQ (2018) Separation of aromatic monomers from oxidatively depolymerized products of lignin by combining Sephadex and silica gel column chromatography. Sep Purif Technol 19:250–256

    Article  Google Scholar 

  • Zhong JJ, Xiao JH (2009) Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Adv Biochem Eng Biot 113:79–150

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 31871757) and Shanghai Engineering Research Center of Food Microbiology (grant number 19 DZ2281100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianzhong Ai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xia, Y., Zhang, Y. et al. Enhancement of antroquinonol and antrodin C productions via in situ extractive fermentation of Antrodia camphorata S-29. Appl Microbiol Biotechnol 103, 8351–8361 (2019). https://doi.org/10.1007/s00253-019-10034-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10034-7

Keywords

Navigation