Bartolini M, Cogliati S, Vileta D, Bauman C, Ramirez W, Grau R (2019) The stress-responsive alternative sigma factor SigB plays a positive role in the antifungal proficiency of Bacillus subtilis. Appl Environ Microbiol 85. https://doi.org/10.1128/AEM.00178-19
Belbahri L, Chenari Bouket A, Rekik I, Alenezi FN, Vallat A, Luptakova L, Petrovova E, Oszako T, Cherrad S, Vacher S, Rateb ME (2017) Comparative genomics of Bacillus amyloliquefaciens strains reveals a core genome with traits for habitat adaptation and a secondary metabolites rich accessory genome. Front Microbiol 8:1438. https://doi.org/10.3389/fmicb.2017.01438
Article
PubMed
PubMed Central
Google Scholar
Burgard C, Zaburannyi N, Nadmid S, Maier J, Jenke-Kodama H, Luxenburger E, Bernauer HS, Wenzel SC (2017) Genomics-guided exploitation of lipopeptide diversity in Myxobacteria. ACS Chem Biol 12(3):779–786. https://doi.org/10.1021/acschembio.6b00953
CAS
Article
PubMed
Google Scholar
Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J (2019) Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol 10:302. https://doi.org/10.3389/fmicb.2019.00302
Article
PubMed
PubMed Central
Google Scholar
Cochrane SA, Vederas JC (2016) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36(1):4–31. https://doi.org/10.1002/med.21321
CAS
Article
PubMed
Google Scholar
Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679. https://doi.org/10.1093/bioinformatics/btm009
CAS
Article
PubMed
Google Scholar
Demain AL (1998) Induction of microbial secondary metabolism. Int Microbiol 1(4):259–264
CAS
PubMed
Google Scholar
D'Souza C, Nakano MM, Zuber P (1994) Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc Natl Acad Sci U S A 91(20):9397–9401. https://doi.org/10.1073/pnas.91.20.9397
Du L, Lou L (2010) PKS and NRPS release mechanisms. Nat Prod Rep 27(2):255–278. https://doi.org/10.1039/b912037h
CAS
Article
PubMed
Google Scholar
Eshita SM, Roberto NH, Beale JM, Mamiya BM, Workman RF (1995) Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. J Antibiot 48(11):1240–1247
CAS
Article
Google Scholar
Frikha-Gargouri O, Ben Abdallah D, Bhar I, Tounsi S (2017) Antibiosis and bmyB gene presence as prevalent traits for the selection of efficient Bacillus biocontrol agents against crown gall disease. Front Plant Sci 8:1363. https://doi.org/10.3389/fpls.2017.01363
Article
PubMed
PubMed Central
Google Scholar
Hamon MA, Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2004) Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 52(3):847–860. https://doi.org/10.1111/j.1365-2958.2004.04023.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Hayashi K, Ohsawa T, Kobayashi K, Ogasawara N, Ogura M (2005) The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis. J Bacteriol 187(19):6659–6667. https://doi.org/10.1128/JB.187.19.6659-6667.2005
CAS
Article
PubMed
PubMed Central
Google Scholar
He H, Zhu YL, Chi LQ, Zhao ZZ, Wang T, Zuo MX, Zhang T, Zhou FJ, Xia LQ, Ding XZ (2015) Screening and antibacterial function of Bacillus amyloliquefaciens X030. Wei Sheng Wu Xue Bao 55(9):1133–1143. https://doi.org/10.13343/j.cnki.wsxb.201501
Article
PubMed
Google Scholar
Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11(10):918–926. https://doi.org/10.1038/nsmb836
CAS
Article
PubMed
Google Scholar
Hu Y, Nan F, Maina SW, Guo J, Wu S, Xin Z (2018) Clone of plipastatin biosynthesis gene cluster by transformation-associated recombination technique and high efficient expression in model organism Bacillus subtilis. J Biotechnol 288:1–8. https://doi.org/10.1016/j.jbiotec.2018.10.006
CAS
Article
PubMed
Google Scholar
Hu F, Liu Y, Li S (2019) Rational strain improvement for surfactin production: enhancing the yield and generating novel structures. Microb Cell Factories 18(1):42. https://doi.org/10.1186/s12934-019-1089-x
Article
Google Scholar
Kimmel PL, Fwu CW, Eggers PW (2013) Segregation, income disparities, and survival in hemodialysis patients. J Am Soc Nephrol 24(2):293–301. https://doi.org/10.1681/ASN.2012070659
Article
PubMed
PubMed Central
Google Scholar
Koumoutsi A, Chen XH, Vater J, Borriss R (2007) DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Appl Environ Microbiol 73(21):6953–6964. https://doi.org/10.1128/AEM.00565-07
CAS
Article
PubMed
PubMed Central
Google Scholar
Kraas FI, Giessen TW, Marahiel MA (2012) Exploring the mechanism of lipid transfer during biosynthesis of the acidic lipopeptide antibiotic CDA. FEBS Lett 586(3):283–288. https://doi.org/10.1016/j.febslet.2012.01.003
CAS
Article
PubMed
Google Scholar
Ladoukakis E, Pereira V, Magny EG, Eyre-Walker A, Couso JP (2011) Hundreds of putatively functional small open reading frames in Drosophila. Genome Biol 12(11):R118. https://doi.org/10.1186/gb-2011-12-11-r118
CAS
Article
PubMed
PubMed Central
Google Scholar
Lim SM, Yoon M-Y, Choi GJ, Choi YH, Jang KS, Shin TS, Park HW, Yu NH, Kim YH, Kim J-C (2017) Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. Plant Pathol J 33(5):488–498. https://doi.org/10.5423/ppj.oa.04.2017.0073
CAS
Article
PubMed
PubMed Central
Google Scholar
Luo Y, Ding X, Xia L, Huang F, Li W, Huang S, Tang Y, Sun Y (2011) Comparative proteomic analysis of Saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield. Proteome Sci 9:40. https://doi.org/10.1186/1477-5956-9-40
CAS
Article
PubMed
PubMed Central
Google Scholar
Luo C, Liu X, Zhou H, Wang X, Chen Z (2015) Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Appl Environ Microbiol 81(1):422–431. https://doi.org/10.1128/AEM.02921-14
CAS
Article
PubMed
Google Scholar
Luo S, Chen XA, Mao XM, Li YQ (2018) Regulatory and biosynthetic effects of the bkd gene clusters on the production of daptomycin and its analogs A21978C1-3. J Ind Microbiol Biotechnol 45(4):271–279. https://doi.org/10.1007/s10295-018-2011-y
CAS
Article
PubMed
Google Scholar
Ma Z, Hu J, Wang X, Wang S (2014) NMR spectroscopic and MS/MS spectrometric characterization of a new lipopeptide antibiotic bacillopeptin B1 produced by a marine sediment-derived Bacillus amyloliquefaciens SH-B74. J Antibiot 67(2):175–178. https://doi.org/10.1038/ja.2013.89
CAS
Article
Google Scholar
Medini D, Serruto D, Parkhill J, Relman DA, Donati C, Moxon R, Falkow S, Rappuoli R (2008) Microbiology in the post-genomic era. Nat Rev Microbiol 6(6):419–430. https://doi.org/10.1038/nrmicro1901
CAS
Article
PubMed
Google Scholar
Moussatova A, Kandt C, O'Mara ML, Tieleman DP (2008) ATP-binding cassette transporters in Escherichia coli. BBA-Biomembranes 1778(9):1757–1771. https://doi.org/10.1016/j.bbamem.2008.06.009
CAS
Article
PubMed
Google Scholar
Palazzotto E, Weber T (2018) Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr Opin Microbiol 45:109–116. https://doi.org/10.1016/j.mib.2018.03.004
CAS
Article
PubMed
Google Scholar
Podgornaia AI, Laub MT (2013) Determinants of specificity in two-component signal transduction. Curr Opin Microbiol 16(2):156–162. https://doi.org/10.1016/j.mib.2013.01.004
CAS
Article
PubMed
Google Scholar
Pretorius D, van Rooyen J, Clarke KG (2015) Enhanced production of antifungal lipopeptides by Bacillus amyloliquefaciens for biocontrol of postharvest disease. New Biotechnol 32(2):243–252. https://doi.org/10.1016/j.nbt.2014.12.003
CAS
Article
Google Scholar
Qian S, Lu H, Meng P, Zhang C, Lv F, Bie X, Lu Z (2015) Effect of inulin on efficient production and regulatory biosynthesis of bacillomycin D in Bacillus subtilis fmbJ. Bioresour Technol 179:260–267. https://doi.org/10.1016/j.biortech.2014.11.086
CAS
Article
PubMed
Google Scholar
Ramamurthi KS, Storz G (2014) The small protein floodgates are opening; now the functional analysis begins. BMC Biol 12:96. https://doi.org/10.1186/s12915-014-0096-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH Jr (2012) The major facilitator superfamily (MFS) revisited. FEBS J 279(11):2022–2035. https://doi.org/10.1111/j.1742-4658.2012.08588.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Salzberg LI, Botella E, Hokamp K, Antelmann H, Maass S, Becher D, Noone D, Devine KM (2015) Genome-wide analysis of phosphorylated PhoP binding to chromosomal DNA reveals several novel features of the PhoPR-mediated phosphate limitation response in Bacillus subtilis. J Bacteriol 197(8):1492–1506. https://doi.org/10.1128/JB.02570-14
CAS
Article
PubMed
PubMed Central
Google Scholar
Sandrin TR, Goldstein JE, Schumaker S (2013) MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom Rev 32(3):188–217. https://doi.org/10.1002/mas.21359
CAS
Article
PubMed
Google Scholar
Shaheen M, Li JR, Ross AC, Vederas JC, Jensen SE (2011) Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics. Chem Biol 18(12):1640–1648. https://doi.org/10.1016/j.chembiol.2011.09.017
CAS
Article
PubMed
Google Scholar
Singh P, Patil Y, Rale V (2019) Biosurfactant production: emerging trends and promising strategies. J Appl Microbiol 126(1):2–13. https://doi.org/10.1111/jam.14057
CAS
Article
PubMed
Google Scholar
Smith DDN, Williams AN, Verrett JN, Bergbusch NT, Manning V, Trippe K, Stavrinides J (2019) Resistance to two vinylglycine antibiotic analogs is conferred by inactivation of two separate amino acid transporters in Erwinia amylovora. J Bacteriol 201(9). https://doi.org/10.1128/JB.00658-18
Soussi S, Essid R, Hardouin J, Gharbi D, Elkahoui S, Tabbene O, Cosette P, Jouenne T, Limam F (2018) Utilization of grape seed flour for antimicrobial lipopeptide production by Bacillus amyloliquefaciens C5 strain. Appl Biochem Biotechnol 187(4):1460–1474. https://doi.org/10.1007/s12010-018-2885-1
CAS
Article
PubMed
Google Scholar
Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
CAS
Article
PubMed
Google Scholar
Strauch MA, Bobay BG, Cavanagh J, Yao F, Wilson A, Le Breton Y (2007) Abh and AbrB control of Bacillus subtilis antimicrobial gene expression. J Bacteriol 189(21):7720–7732. https://doi.org/10.1128/JB.01081-07
CAS
Article
PubMed
PubMed Central
Google Scholar
Sun J, Qian S, Lu J, Liu Y, Lu F, Bie X, Lu Z (2018) Knockout of rapC improves the bacillomycin D yield based on de novo genome sequencing of Bacillus amyloliquefaciens fmbJ. J Agric Food Chem 66(17):4422–4430. https://doi.org/10.1021/acs.jafc.8b00418
CAS
Article
PubMed
Google Scholar
Verhamme DT, Murray EJ, Stanley-Wall NR (2009) DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J Bacteriol 191(1):100–108. https://doi.org/10.1128/JB.01236-08
CAS
Article
PubMed
Google Scholar
Weinrauch Y, Penchev R, Dubnau E, Smith I, Dubnau D (1990) A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev 4(5):860–872
CAS
Article
PubMed
Google Scholar
Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. https://doi.org/10.1038/nmeth.1322
CAS
Article
PubMed
Google Scholar
Wüthrich K (2017) NMR with proteins and nucleic acids. Europhys News 17(1):11–13. https://doi.org/10.1051/epn/19861701011
Article
Google Scholar
Xu B-H, Ye Z-W, Zheng Q-W, Wei T, Lin J-F, Guo L-Q (2018) Isolation and characterization of cyclic lipopeptides with broad-spectrum antimicrobial activity from Bacillus siamensis JFL15. 3 Biotech 8(10):444. https://doi.org/10.1007/s13205-018-1443-4
Article
PubMed
PubMed Central
Google Scholar
Yang Q, Ding X, Liu X, Liu S, Sun Y, Yu Z, Hu S, Rang J, He H, He L, Xia L (2014) Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa. Microb Cell Factories 13(1):27. https://doi.org/10.1186/1475-2859-13-27
CAS
Article
Google Scholar
Yaseen Y, Diop A, Gancel F, Bechet M, Jacques P, Drider D (2018) Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis. Arch Microbiol 200(5):783–791. https://doi.org/10.1007/s00203-018-1483-5
CAS
Article
PubMed
Google Scholar
Zhang Z, Ding ZT, Zhong J, Zhou JY, Shu D, Luo D, Yang J, Tan H (2017) Improvement of iturin A production in Bacillus subtilis ZK0 by overexpression of the comA and sigA genes. Lett Appl Microbiol 64(6):452–458. https://doi.org/10.1111/lam.12739
CAS
Article
PubMed
Google Scholar
Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, Rajoka MSR, Yang H, Jin M (2017) Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101(15):5951–5960. https://doi.org/10.1007/s00253-017-8396-0
CAS
Article
PubMed
Google Scholar
Zhao J, Zhang C, Lu Z (2018) Differential proteomics research of Bacillus amyloliquefaciens and its genome-shuffled saltant for improving fengycin production. Braz J Microbiol 49:166–177. https://doi.org/10.1016/j.bjm.2018.04.010
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhi Y, Wu Q, Xu Y (2017) Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Sci Rep 7:40976. https://doi.org/10.1038/srep40976
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou B, Yang Y, Chen T, Lou Y, Yang XF (2018a) The oligopeptide ABC transporter OppA4 negatively regulates the virulence factor OspC production of the Lyme disease pathogen. Ticks Tick Borne Dis 9(5):1343–1349. https://doi.org/10.1016/j.ttbdis.2018.06.006
Article
PubMed
PubMed Central
Google Scholar
Zhou M, Liu F, Yang X, Jin J, Dong X, Zeng K-W, Liu D, Zhang Y, Ma M, Yang D (2018b) Bacillibactin and bacillomycin analogues with cytotoxicities against human cancer cell lines from marine Bacillus sp PKU-MA00093 and PKU-MA00092. Mar Drugs 16(1):22. https://doi.org/10.3390/md16010022
CAS
Article
PubMed Central
Google Scholar