Skip to main content

A comprehensive genomic and growth proteomic analysis of antitumor lipopeptide bacillomycin Lb biosynthesis in Bacillus amyloliquefaciens X030


Lipopeptides (such as iturin, fengycin, and surfactin) from Bacillus possess antibacterial, antifungal, and antiviral activities and have important application in agriculture and pharmaceuticals. Although unremitting efforts have been devoted to improve lipopeptide production by designing gene regulatory circuits or optimizing fermentation process, little attention has been paid to utilizing multi-omics for systematically mining core genes and proteins during the bacterial growth cycle. Here, lipopeptide bacillomycin Lb from new Bacillus amyloliquefaciens X030 was isolated and first found to have anticancer activity in various cancer cells (such as SMMC-7721 and MDA-MB-231). A comprehensive genomic and growth proteomic analysis of X030 revealed bacillomycin Lb biosynthetic gene cluster, key enzymes and potential regulatory proteins (PerR, PhoP, CcpA, and CsfB), and novel links between primary metabolism and bacillomycin Lb production in X030. The antitumor activity of the fermentation supernatant supplemented with amino acids (such as glutamic acid) and sucrose was significantly increased, verifying the role of key metabolic switches in the metabolic regulatory network. Quantitative real-time PCR analysis confirmed that 7 differential expressed genes exhibited a positive correlation between changes at transcriptional and translational levels. The study not only will stimulate the deeper and wider antitumor study of lipopeptides but also provide a comprehensive database, which promotes an in-depth analysis of pathways and networks for complex events in lipopeptide biosynthesis and regulation and gives great help in improving the yield of bacillomycin Lb (media optimization, genetic modification, or pathway engineering).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


Download references


This work was financially supported by the National key Research and Development program of China (2017YFD0201201), the National Natural Science Foundation of China (31370116), and the Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province (20134486).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xuezhi Ding.

Ethics declarations

This study did not involve any research involving human participants or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 1173 kb)


(XLSX 3053 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, J.Y., Zhou, K., Huang, W.T. et al. A comprehensive genomic and growth proteomic analysis of antitumor lipopeptide bacillomycin Lb biosynthesis in Bacillus amyloliquefaciens X030. Appl Microbiol Biotechnol 103, 7647–7662 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Genomics
  • Growth proteomics
  • Bacillomycin Lb
  • Lipopeptide
  • Anticancer