Skip to main content

Novel endo-(1,4)-β-glucanase Bgh12A and xyloglucanase Xgh12B from Aspergillus cervinus belong to GH12 subgroup I and II, respectively


In spite of intensive exploitation of aspergilli for the industrial production of carbohydrases, little is known about hydrolytic enzymes of fungi from the section Cervini. Novel glycoside hydrolases Bgh12A and Xgh12B from Aspergillus cervinus represent examples of divergent activities within one enzyme family and belong to the GH12 phylogenetic subgroup I (endo-(1,4)-β-glucanases) and II (endo-xyloglucanases), respectively. The bgh12A and xgh12B genes were identified in the unsequenced genome of A. cervinus using primers designed for conservative regions of the corresponding subgroups and a genome walking approach. The recombinant enzymes were heterologously produced in Pichia pastoris, purified, and characterized. Bgh12A was an endo-(1,4)-β-glucanase (EC hydrolyzing the unbranched soluble β-(1,4)-glucans and mixed linkage β-(1,3;1,4)-D-glucans. Bgh12A exhibited maximum activity on barley β-glucan (BBG), which amounted to 614 ± 30 U/mg of protein. The final products of BBG and lichenan hydrolysis were glucose, cellobiose, cellotriose, 4-O-β-laminaribiosyl-glucose, and a range of higher mixed-linkage gluco-oligosaccharides. In contrast, the activity of endo-xyloglucanase Xgh12B (EC was restricted to xyloglucan, with 542 ± 39 U/mg protein. The enzyme cleaved the (1,4)-β-glycosidic bonds of the xyloglucan backbone at the unsubstituted glucose residues finally generating cellotetraose-based hepta-, octa, and nona-oligosaccharides. Bgh12A and Xgh12B had maximal activity at 55 °C, pH 5.0. At these conditions, the half-time of Xgh12B inactivation was 158 min, whereas the half-life of Bgh12A was 5 min. Recombinant P. pastoris strains produced up to 106 U/L of the target enzymes with at least 75% of recombinant protein in the total extracellular proteins. The Bgh12A and Xgh12B sequences show 43% identity. Strict differences in substrate specificity of Bgh12A and Xgh12B were in congruence with the presence of subgroup-specific structural loops and substrate-binding aromatic residues in the catalytic cleft of the enzymes. Individual composition of aromatic residues in the catalytic cleft defined variability in substrate selectivity within GH12 subgroups I and II.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


Download references


This study was funded by the Ministry of Education and Science of the Russian Federation (grant number 14.628.21.0001) and the German Federal Ministry of Education and Research (grant number FKZ: 031A556).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Oksana V. Berezina.

Ethics declarations

The article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 1224 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rykov, S.V., Kornberger, P., Herlet, J. et al. Novel endo-(1,4)-β-glucanase Bgh12A and xyloglucanase Xgh12B from Aspergillus cervinus belong to GH12 subgroup I and II, respectively. Appl Microbiol Biotechnol 103, 7553–7566 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Aspergillus cervinus
  • Glycoside hydrolase family 12
  • Xyloglucan
  • Barley β-glucan
  • Xyloglucanase
  • Endoglucanase
  • Pichia pastoris