Skip to main content

Syntroph diversity and abundance in anaerobic digestion revealed through a comparative core microbiome approach

Abstract

Anaerobic digestion is an important biotechnology treatment process for conversion of waste to energy. In this study, a comparative core microbiome approach, i.e., determining taxa that are shared in functioning digesters but not shared in non-functioning digesters, was used to determine microbial taxa that could play key roles for effective anaerobic digestion. Anaerobic digester functions were impaired by adding the broad-spectrum antimicrobial triclosan (TCS) or triclocarban (TCC) at different concentrations, and the core microbiomes in both functioning and non-functioning anaerobic digesters were compared. Digesters treated with high (2500 mg/kg) or medium (450 mg/kg) TCS and high (850 mg/kg) TCC concentrations lost their function, i.e., methane production decreased, effluent volatile fatty acid concentrations increased, and pH decreased. Changes in microbial community diversity and compositions were assessed using 16S rRNA gene amplicon sequencing. Microbial richness decreased significantly in non-functioning digesters (p < 0.001). Microbial community compositions in non-functioning digesters significantly differed from those in functioning digesters (p = 0.001, ANOSIM). Microbes identified as potentially key taxa included previously known fatty acid-degrading syntrophs and amino acid-degrading syntrophs. A diverse group of syntrophs detected in this study had low relative abundance in functioning digesters, suggesting the importance of rare microbes in anaerobic digester operation. The comparative microbiome approach used in this study can be applied to other microbial systems where a community-driven biological phenomena can be observed directly.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ahring BK, Sandberg M, Angelidaki I (1995) Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Appl Microbiol Biotechnol 43:559–565

    Article  CAS  Google Scholar 

  • Ariesyady HD, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41:1554–1568

    Article  CAS  PubMed  Google Scholar 

  • Bernalier A, Willems A, Leclerc M, Rochet V, Collins MD (1996) Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch Microbiol 166:176–183

    Article  CAS  PubMed  Google Scholar 

  • Blume F, Bergmann I, Nettmann E, Schelle H, Rehde G, Mundt K, Klocke M (2010) Methanogenic population dynamics during semi-continuous biogas fermentation and acidification by overloading. J Appl Microbiol 109:441–450

    CAS  PubMed  Google Scholar 

  • Briones A, Raskin L (2003) Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol 14:270–276

    Article  CAS  PubMed  Google Scholar 

  • Byrne-Bailey KG, Coates JD (2012) Complete genome sequence of the anaerobic perchlorate-reducing bacterium Azospira suillum strain PS. J Bacteriol 194:2767–2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinali-Rezende J, Colturato LF, Colturato TD, Chartone-Souza E, Nascimento AM, Sanz JL (2012) Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. Bioresour Technol 119:373–383

    Article  CAS  PubMed  Google Scholar 

  • Carey D, Zitomer D, Hristova K, Kappell A, McNamara P (2016a) Triclocarban influences antibiotic resistance and alters anaerobic digester microbial community structure. Environ Sci Technol 50:126–134

    Article  CAS  PubMed  Google Scholar 

  • Carey D, Zitomer DH, Kappell A, Choi M, Hristova KHK, McNamara P (2016b). Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters. Environ Sci: Processes Impacts

  • Chen S, Dong X (2005) Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int J Syst Evol Microbiol 55:2257–2261

    Article  CAS  PubMed  Google Scholar 

  • Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2005) Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7:1104–1115

    Article  CAS  PubMed  Google Scholar 

  • Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR, Schweizer HP (2001) Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 45:428–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bok FA, Stams AJ, Dijkema C, Boone DR (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67:1800–1804

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vrieze J, Pinto AJ, Sloan WT, Ijaz UZ (2018) The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome 6:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190

    Article  CAS  Google Scholar 

  • Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8(1):125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwyer DF, Weeg-Aerssens E, Shelton DR, Tiedje JM (1988) Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. Appl Environ Microbiol 54:1354–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez AS, Hashsham SA, Dollhopf SL, Raskin L, Glagoleva O, Dazzo FB, Hickey RF, Criddle CS, Tiedje JM (2000) Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66:4058–4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figuerola EL, Erijman L (2007) Bacterial taxa abundance pattern in an industrial wastewater treatment system determined by the full rRNA cycle approach. Environ Microbiol 9:1780–1789

    Article  CAS  PubMed  Google Scholar 

  • Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto M, Carey DE, McNamara PJ (2018) Metagenomics reveal triclosan-induced changes in the antibiotic resistome of anaerobic digesters. Environ Pollut 241:1182–1190

    Article  CAS  PubMed  Google Scholar 

  • Göker M, Saunders E, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng J-F, Han C, Tapia R (2012) Genome sequence of the moderately thermophilic, amino-acid-degrading and sulfur-reducing bacterium Thermovirga lienii type strain (Cas60314 T). Stand Genomic Sci 6:230–239

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahnke S, Langer T, Koeck DE, Klocke M (2016) Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum. Int J Syst Evol Microbiol 66:1466–1475

    Article  CAS  PubMed  Google Scholar 

  • Halden RU (2014) On the need and speed of regulating triclosan and triclocarban in the United States. Environ Sci Technol 48:3603–3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32:5–12

    Article  CAS  Google Scholar 

  • Harms C, Schleicher A, Collins MD, Andreesen JR (1998) Tissierella creatinophila sp. nov., a Gram-positive, anaerobic, non-spore-forming, creatinine-fermenting organism. Int J Syst Evol Microbiol 48:983–993

    CAS  Google Scholar 

  • Hattori S, Luo H, Shoun H, Kamagata Y (2001) Involvement of formate as an interspecies electron carrier in a syntrophic acetate-oxidizing anaerobic microorganism in coculture with methanogens. J Biosci Bioeng 91:294–298

    Article  CAS  PubMed  Google Scholar 

  • Ike M, Inoue D, Miyano T, Liu TT, Sei K, Soda S, Kadoshin S (2010) Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project. Bioresour Technol 101:3952–3957

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Yoshiguchi K, Ariesyady HD, Okabe S (2011) Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge. ISME J 5:1844–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456

    Article  CAS  PubMed  Google Scholar 

  • Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ (1999) Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171:107–114

    Article  CAS  PubMed  Google Scholar 

  • Jang HM, Kim JH, Ha JH, Park JM (2014) Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresour Technol 165:174–182

    Article  CAS  PubMed  Google Scholar 

  • Jimenez J, Latrille E, Harmand J, Robles A, Ferrer J, Gaida D, Wolf C, Mairet F, Bernard O, Alcaraz-Gonzalez V (2015) Instrumentation and control of anaerobic digestion processes: a review and some research challenges. Rev Environ Sci Biotechnol 14:615–648

    Article  Google Scholar 

  • Kato S, Watanabe K (2010) Ecological and evolutionary interactions in syntrophic methanogenic consortia. Microbes Environ 25:145–151

    Article  PubMed  Google Scholar 

  • Kotsyurbenko OR, Friedrich MW, Simankova MV, Nozhevnikova AN, Golyshin PN, Timmis KN, Conrad R (2007) Shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an Acidophilic Methanobacterium Strain. Appl Environ Microbiol 73:2344–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzuma A, Kato S, Watanabe K (2015) Microbial interspecies interactions: recent findings in syntrophic consortia. Front Microbiol 6:477

    PubMed  PubMed Central  Google Scholar 

  • Kuroda K, Hatamoto M, Nakahara N, Abe K, Takahashi M, Araki N, Yamaguchi T (2015) Community composition of known and uncultured archaeal lineages in anaerobic or anoxic wastewater treatment sludge. Microb Ecol 69:586–596

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Zhao F, Rezenom YH, Russell DH, Chu K-H (2012a) Biodegradation of triclosan by a wastewater microorganism. Water Res 46:4226–4234

    Article  CAS  PubMed  Google Scholar 

  • Lee S-H, Kang H-J, Lee YH, Lee TJ, Han K, Choi Y, Park H-D (2012b) Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters. J Environ Monit 14:1893–1905

    Article  CAS  PubMed  Google Scholar 

  • Lee S-H, Park J-H, Kang H-J, Lee YH, Lee TJ, Park H-D (2013) Distribution and abundance of Spirochaetes in full-scale anaerobic digesters. Bioresour Technol 145:25–32

    Article  CAS  PubMed  Google Scholar 

  • Leng L, Yang P, Singh S, Zhuang H, Xu L, Chen W, Dolfing J, Li D, Zhang Y, Zeng H (2018) A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresour Technol 247:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Evol Microbiol 49:545–556

    CAS  Google Scholar 

  • Liu W-T, Chan O-C, Fang HH (2002) Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Res 36:3203–3210

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Qiu Q, Lu Y (2011) Syntrophomonadaceae-affiliated species as active butyrate-utilizing syntrophs in paddy field soil. Appl Environ Microbiol 77:3884–3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas R, Kuchenbuch A, Fetzer I, Harms H, Kleinsteuber S (2015) Long-term monitoring reveals stable and remarkably similar microbial communities in parallel full-scale biogas reactors digesting energy crops. FEMS Microbiol Ecol 91:fiv004

    Article  CAS  PubMed  Google Scholar 

  • Lynch MD, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229

    Article  CAS  PubMed  Google Scholar 

  • McHugh S, Carton M, Collins G, O'Flaherty V (2004) Reactor performance and microbial community dynamics during anaerobic biological treatment of wastewaters at 16–37 C. FEMS Microbiol Ecol 48:369–378

    CAS  PubMed  Google Scholar 

  • McInerney M, Bryant M, Hespell R, Costerton J (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNamara PJ, Krzmarzick MJ (2013) Triclosan enriches for Dehalococcoides-like Chloroflexi in anaerobic soil at environmentally relevant concentrations. FEMS Microbiol Lett 344:48–52

    Article  CAS  PubMed  Google Scholar 

  • McNamara PJ, LaPara TM, Novak PJ (2014) The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance. Environ Sci Technol 48:7393–7400

    Article  CAS  PubMed  Google Scholar 

  • Morris BE, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37:384–406

    Article  CAS  PubMed  Google Scholar 

  • Narihiro T, Nobu MK, Kim NK, Kamagata Y, Liu WT (2015) The nexus of syntrophy-associated microbiota in anaerobic digestion revealed by long-term enrichment and community survey. Environ Microbiol 17:1707–1720

    Article  CAS  PubMed  Google Scholar 

  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov.(“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Evol Microbiol 40:79–82

    Google Scholar 

  • Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, Rivière D, Ganesan A, Daegelen P, Sghir A (2008) “Candidatus Cloacamonas acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 190:2572–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plugge CM, Balk M, Zoetendal EG, Stams AJ (2002) Gelria glutamica gen. nov., sp. nov., a thermophilic, obligately syntrophic, glutamate-degrading anaerobe. Int J Syst Evol Microbiol 52:401–407

    Article  CAS  PubMed  Google Scholar 

  • Pycke BF, Crabbé A, Verstraete W, Leys N (2010) Characterization of triclosan-resistant mutants reveals multiple antimicrobial resistance mechanisms in Rhodospirillum rubrum S1H. Appl Environ Microbiol 76:3116–3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R_Core_Team (2013) R: a language and environment for statistical computing: Vienna, Austria

  • Reeder J, Knight R (2010) Rapid denoising of pyrosequencing amplicon data: exploiting the rank-abundance distribution. Nat Methods 7:668–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ripley L, Boyle W, Converse J (1986). Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. J Water Pollut Control Fed 406–411

  • Rittmann BE, Krajmalnik-Brown R, Halden RU (2008) Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6:604–612

    Article  CAS  PubMed  Google Scholar 

  • Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–714

    Article  PubMed  Google Scholar 

  • Rouvière PE, Chen MW (2003) Isolation of Brachymonas petroleovorans CHX, a novel cyclohexane-degrading β-proteobacterium. FEMS Microbiol Lett 227:101–106

    Article  CAS  PubMed  Google Scholar 

  • Rui J, Li J, Zhang S, Yan X, Wang Y, Li X (2015) The core populations and co-occurrence patterns of prokaryotic communities in household biogas digesters. Biotechnol Biofuels 8:158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz J, Rodriguez N, Amils áR (1996) The action of antibiotics on the anaerobic digestion process. Appl Microbiol Biotechnol 46:587–592

    Article  CAS  PubMed  Google Scholar 

  • Schauer-Gimenez AE, Zitomer DH, Maki JS, Struble CA (2010) Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure. Water Res 44:3555–3564

    Article  CAS  PubMed  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schink B (2006) Syntrophic associations in methanogenic degradation. Prog Mol Subcell Biol 41:1–19

    Article  CAS  PubMed  Google Scholar 

  • Schnürer A, Schink B, Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Evol Microbiol 46:1145–1152

    Google Scholar 

  • Schnürer A, Zellner G, Svensson BH (1999) Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol Ecol 29:249–261

    Article  Google Scholar 

  • Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah HN, Gharbia SE (1992) Biochemical and chemical studies on strains designated Prevotella intermedia and proposal of a new pigmented species, Prevotella nigrescens sp. nov. Int J Syst Evol Microbiol 42:542–546

    CAS  Google Scholar 

  • Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K (2006) Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl Microbiol Biotechnol 72:401–415

    Article  CAS  PubMed  Google Scholar 

  • Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, McDonnald E, Rohlin L, Culley DE, Gunsalus R (2010) The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Environ Microbiol 12:2289–2301

    CAS  PubMed  Google Scholar 

  • Sorokin DY, Tourova T, Mußmann M, Muyzer G (2008) Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 12:431–439

    Article  CAS  PubMed  Google Scholar 

  • Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  PubMed  Google Scholar 

  • Steyer J-P, Buffière P, Rolland D, Moletta R (1999) Advanced control of anaerobic digestion processes through disturbances monitoring. Water Res 33:2059–2068

    Article  CAS  Google Scholar 

  • Sun L, Pope PB, Eijsink VG, Schnürer A (2015) Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb Biotechnol 8:815–827

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sørensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626

    Article  CAS  PubMed  Google Scholar 

  • Tale V, Maki J, Zitomer D (2015) Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community. Water Res 70:138–147

    Article  CAS  PubMed  Google Scholar 

  • Ueki A, Akasaka H, Suzuki D, Ueki K (2006) Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56:39–44

    Article  CAS  PubMed  Google Scholar 

  • USEPA (2009) Targeted National Sewage Sludge Survey Statistical Analysis Report: United States Environmental Protection Agency Office of water, EPA-822-R-08-018

  • Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64

    Article  CAS  PubMed  Google Scholar 

  • Venkiteshwaran K, Milferstedt K, Hamelin J, Fujimoto M, Johnson M, Zitomer D (2016) Correlating methane production to microbiota in anaerobic digesters fed synthetic wastewater. Water Res

  • Walker DJ, Nevin KP, Holmes DE, Rotaru A-E, Ward JE, Woodard TL, Zhu J, Ueki T, Nonnenmann SS, McInerney MJ (2018) Syntrophus conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option. Biorxiv 479683

  • Walters WA, Caporaso JG, Lauber CL, Berg-Lyons D, Fierer N, Knight R (2011) PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers. Bioinformatics 27:1159–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerholm M, Roos S, Schnürer A (2010) Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol Lett 309:100–104

    CAS  PubMed  Google Scholar 

  • White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5:e1000352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 57:2299–2306

    Article  CAS  PubMed  Google Scholar 

  • Ying G-G, Yu X-Y, Kookana RS (2007) Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ Pollut 150:300–305

    Article  CAS  PubMed  Google Scholar 

  • Zhilina TN, Appel R, Probian C, Brossa EL, Harder J, Widdel F, Zavarzin GA (2004) Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch Microbiol 182:244–253

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Lin J, Ma J, Cronan JE, Wang H (2010) Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob Agents Chemother 54:689–698

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

M.F. was funded by a Binsfeld Fellowship and by the Marquette University Water Quality Center. D.E.C. was funded by the Marquette University Water Quality Center, the Lafferty Family Foundation, and a Binsfeld Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. McNamara.

Ethics declarations

Ethical statement

No animals or human subjects were used to generate data in this research article.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1135 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimoto, M., Carey, D.E., Zitomer, D.H. et al. Syntroph diversity and abundance in anaerobic digestion revealed through a comparative core microbiome approach. Appl Microbiol Biotechnol 103, 6353–6367 (2019). https://doi.org/10.1007/s00253-019-09862-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09862-4

Keywords