Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 11, pp 4443–4453 | Cite as

Purification-independent immunoreagents obtained by displaying nanobodies on bacteria surface

  • Sandra Oloketuyi
  • Carina Dilkaute
  • Elisa Mazzega
  • Joachim Jose
  • Ario de MarcoEmail author
Biotechnologically relevant enzymes and proteins

Abstract

The availability of preimmune libraries of antibody fragments allows for the fast generation of binders which can be expressed in both eukaryotic and prokaryotic systems. We exploited the recombinant nature of antibody fragments to demonstrate the possibility of expressing them as functional proteins displayed on the surface of Escherichia coli and by such a way to generate living reagents ready-to-use for diagnostics. Such immunoreagents were effectively exploited without the necessity of any purification step to prepare immunocapture surfaces suitable for the diagnostic of both cancer cells and toxic microalgae. The same nanobody-displaying bacteria were also engineered to coexpress GFP in their cytoplasm. Suspensions of such living fluorescent immunoreagents effectively bound to eukaryotic cells making them visible and quantifiable by flow cytometry analysis and using 96-well plate readers. The collected data showed the suitability of such living immunoreagents for reproducible and inexpensive diagnostic applications.

Keywords

Antibody functionalization Bacterial display Nanobodies Diagnostics Toxic microalgae 

Notes

Acknowledgments

The authors wish to thank Alfred Baran for having provided the microalgae strains.

Funding

This work was supported by the grants ARRS/N4-0046 and ARRS/J4-9322 provided by the Javna agencija za raziskovalno dejavnost Republike Slovenije.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_9823_MOESM1_ESM.pdf (247 kb)
ESM 1 (PDF 246 kb)

References

  1. Aliprandi M, Sparacio E, Pivetta F, Ossolengo G, Maestro R, de Marco A (2010) The availability of a recombinant anti-SNAP antibody in VHH format amplifies the application flexibility of SNAP-tagged proteins. J Biomed Biotechnol ID 658954. doi:  https://doi.org/10.1155/2010/658954
  2. Ambrosetti E, Paoletti P, Bosco A, Parisse P, Scaini D, Tagliabue E, de Marco A, Casalis L (2017) Quantification of circulating cancer biomarkers via sensitive topographic measurements on single binder nanoarrays. ACS Omega 2:2618–2629CrossRefGoogle Scholar
  3. Berrow NS, Alderton D, Sainsbury S, Nettleship J, Assenberg R, Rahman N, Stuart DI, Owens RJ (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucl Acids Res 35:e45CrossRefGoogle Scholar
  4. Bong JH, Song HW, Kim TH, Kang MJ, Jose J, Pyun JC (2018) Refolding of autodisplayed anti-NEF scFv through oxidation with glutathione for immunosensors. Biosens Bioelectron 102:600–609CrossRefGoogle Scholar
  5. Chauhan N, Kalal N, Juneja P, Punjabi PB (2016) Functionalized surfaces: bacterial adhesion. In: Mishra M (ed) Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor and Francis, New York, pp 3509–3525CrossRefGoogle Scholar
  6. Crepin R, Gentien D, Duché A, Rapinat A, Reyes C, Némati F, Massonnet G, Decaudin D, Djender S, Moutel S, Desrumeaux K, Cassoux N, Piperno-Neumann S, Amigorena S, Perez F, Roman Roman S, de Marco A (2017a) Nanobodies against surface biomarkers enable the analysis of tumor genetic heterogeneity in uveal melanoma patient derived xenografts. Pigment Cell Melanoma Res 30:317–327CrossRefGoogle Scholar
  7. Crepin R, Veggiani G, Djender S, Beugnet A, Planeix F, Pichon C, Moutel S, Amigorena S, Perez F, Ghinea N, de Marco A (2017b) Whole-cell biopanning with a synthetic phage display library of nanobodies enabled the recovery of follicle-stimulating hormone receptor inhibitors. Biochem Biophys Res Commun 493:1567–1572CrossRefGoogle Scholar
  8. de Marco A (2018) Nanomaterial bio-activation and macromolecules functionalization: the search for reliable protocols. Protein Expr Purif 147:49–54CrossRefGoogle Scholar
  9. de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B (2007) Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol 7:32CrossRefGoogle Scholar
  10. De Marni M, Monegal A, Venturini S, Vinati S, Carbone R, de Marco A (2012) Antibody purification-independent microarrays (PIM) by direct bacteria spotting on TiO2-treated slides. Methods 56:317–325CrossRefGoogle Scholar
  11. Djender S, Schneider A, Beugnet A, Crepin R, Desrumeaux K, Romani C, Moutel S, Perez F, de Marco A (2014) Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies. Microb Cell Factories 13:140CrossRefGoogle Scholar
  12. Fleetwood F, Devoogdt N, Pellis M, Wernery U, Muyldermans S, Ståhl S, Löfblom J (2013) Surface display of a single-domain antibody library on gram-positive bacteria. Cell Mol Life Sci 70:1081–1093CrossRefGoogle Scholar
  13. Fleetwood F, Andersson KG, Ståhl S, Löfblom J (2014) An engineered autotransporter-based surface expression vector enables efficient display of Affibody molecules on OmpT-negative E. coli as well as protease-mediated secretion in OmpT-positive strains. Microb Cell Factories 13:179CrossRefGoogle Scholar
  14. Gratz A, Bollacke A, Stephan S, Nienberg C, Le Borgne M, Götz C, Jose J (2015) Functional display of heterotetrameric human protein kinase CK2 on Escherichia coli: a novel tool for drug discovery. Microb Cell Factories 14:74CrossRefGoogle Scholar
  15. Gustavson M, Bäcklund E, Larsson G (2011) Optimisation of surface expression using the AIDA autotransporter. Microb Cell Factories 10:72CrossRefGoogle Scholar
  16. Hoelsch K, Sührer I, Heusel M, Weuster-Botz D (2013) Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Appl Microbiol Biotechnol 97:2473–2481CrossRefGoogle Scholar
  17. Jong WSP, Soprova Z, de Punder K, ten Hagen-Jongman CM, Wagner S, Wickström D, de Gier JW, Andersen P, van der Wel NN, Luirink J (2012) A structurally informed autotransporter platform for efficient heterologous protein secretion and display. Microb Cell Factories 11:85CrossRefGoogle Scholar
  18. Jose J, Handel S (2003) Monitoring the cellular surface display of recombinant proteins by cysteine labeling and flow cytometry. Chembiochem 4:396–405CrossRefGoogle Scholar
  19. Kranen E, Detzel C, Weber T, Jose J (2014) Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs. Microb Cell Factories 13:19CrossRefGoogle Scholar
  20. Krüger C, Hu Y, Pan Q, Marcotte H, Hultberg A, Delwar D, van Dalen PJ, Pouwels PH, Leer RJ, Kelly CG, van Dollenweerd C, Ma JK, Hammarström L (2002) In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol 20:702–706CrossRefGoogle Scholar
  21. Lorenzetti M, Dogša I, Stošicki T, Stopar D, Kalin M, Kobe S, Novak S (2015) The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl Mater Interfaces 7:1644–1651CrossRefGoogle Scholar
  22. Marcotte H, Kõll-Klais P, Hultberg A, Zhao Y, Gmür R, Mändar R, Mikelsaar M, Hammarström L (2006) Expression of single-chain antibody against RgpA protease of Porphyromonas gingivalis in Lactobacillus. J Appl Microbiol 100:256–263CrossRefGoogle Scholar
  23. Massa PE, Paniccia A, Monegal A, de Marco A, Rescigno M (2013) Salmonella engineered to express CD20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood 122:705–714CrossRefGoogle Scholar
  24. Mazzega E, Beran A, Cabrini M, de Marco A (2018) In vitro isolation of nanobodies for selective Alexandrium minutum recognition: a model for convenient development of dedicated immuno-reagents to study and diagnostic toxic unicellular algae. Harmful Algae 82:44–51CrossRefGoogle Scholar
  25. Michon C, Langella P, Eijsink VG, Mathiesen G, Chatel JM (2016) Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb Cell Factories 15:70CrossRefGoogle Scholar
  26. Monegal A, Ami D, Martinelli C, Huang H, Aliprandi M, Capasso P, Francavilla C, Ossolengo G, de Marco A (2009) Immunological applications of single domain llama recombinant antibodies isolated from a naïve library. Protein Eng Des Sel 22:273–280CrossRefGoogle Scholar
  27. Moutel S, Bery N, Bernard V, Keller L, Lemesre E, de Marco A, Ligat L, Rain JC, Favre G, Olichon A, Perez F (2016) NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. eLife.  https://doi.org/10.7554/eLife.16228
  28. Nhan NT, de Valdivia EG, Gustavsson M, Hai TN, Larsson G (2011) Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus. Microb Cell Factories 10:22CrossRefGoogle Scholar
  29. Park M, Yoo G, Bong J-H, Jose J, Kang MJ, Pyun JC (2015) Isolation and characterization of the outer membrane of Escherichia coli with autodisplayed Z-domains. Biochim Biophys Acta Biomembr 1848:842–847CrossRefGoogle Scholar
  30. Popovic M, Mazzega E, Toffoletto B, de Marco A (2018) Isolation of anti-extra-cellular vesicle single-domain antibodies by direct panning on vesicle-enriched fractions. Microb Cell Factories 17:6CrossRefGoogle Scholar
  31. Quehl P, Hollender J, Schüürmann J, Brossette T, Maas R, Jose J (2016) Co-expression of active human cytochrome P450 1A2 and cytochrome P450 reductase on the cell surface of Escherichia coli. Microb Cell Factories 15:26CrossRefGoogle Scholar
  32. Quehl P, Schüürmann J, Hollender J, Jose J (2017) Improving the activity of surface displayed cytochrome P450 enzymes by optimizing the outer membrane linker. Biochim Biophys Acta Biomembr 1859:104–116CrossRefGoogle Scholar
  33. Salema V, Mañas C, Cerdán L, Piñero-Lambea C, Marín E, Roovers RC, Van Bergen En Henegouwen PM, Fernández LÁ (2016) High affinity nanobodies against human epidermal growth factor receptor selected on cells by E. coli display. MAbs 8:1286–1301CrossRefGoogle Scholar
  34. Schüürmann J, Quehl P, Festel G, Jose J (2014) Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Appl Microbiol Biotechnol 98:8031–8046CrossRefGoogle Scholar
  35. Shao X, Jiang M, Yu Z, Cai H, Li L (2009) Surface display of heterologous proteins in Bacillus thuringiensis using a peptidoglycan hydrolase anchor. Microb Cell Factories 8:48CrossRefGoogle Scholar
  36. Sichwart S, Tozakidis IE, Teese M, Jose J (2015) Maximized autotransporter-mediated expression (MATE) for surface display and secretion of recombinant proteins in Escherichia coli. Food Technol Biotechnol 53:251CrossRefGoogle Scholar
  37. Sührer I, Langemann T, Lubitz W, Weuster-Botz D, Castiglione K (2015) A novel one-step expression and immobilization method for the production of biocatalytic preparations. Microb Cell Factories 14:180CrossRefGoogle Scholar
  38. Tozakidis IEP, Sichwart S, Jose J (2015) Going beyond E. coli: autotransporter based surface display on alternative host organisms. New Biotechnol 32:644–650CrossRefGoogle Scholar
  39. Veggiani G, de Marco A (2011) Improved quantitative and qualitative production of single-domain intrabodies mediated by the co-expression of Erv1p sulfhydryl oxidase. Protein Expr Purif 79:111–114CrossRefGoogle Scholar
  40. Veggiani G, Ossolengo G, Aliprandi M, Cavallaro U, de Marco A (2011) Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1. Biochem Biophys Res Commun 408:692–696CrossRefGoogle Scholar
  41. Wieczorek AS, Martin VJJ (2010) Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis. Microb Cell Factories 9:69CrossRefGoogle Scholar
  42. Yoo G, Park M, Lee E-H, Jose J, Pyun J-C (2011) Immobilization of E. coli with autodisplayed Z-domains to a surface-modified microplate for immunoassay. Anal Chim Acta 707:142–147CrossRefGoogle Scholar
  43. Zou T, Dembele F, Beugnet A, Sengmanivong L, Trepout S, Marco S, de Marco A, Li M-H (2015) Nanobody-functionalized PEG-b-PCL polymersomes and their targeting study. J Biotechnol 214:147–155CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Environmental and Life SciencesUniversity of Nova GoricaNova GoricaSlovenia
  2. 2.Institut für Pharmazeutische und Medizinische Chemie, PharmaCampusWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations