Skip to main content
Log in

Functional response of sediment bacterial community to iron-reducing bioaugmentation with Shewanella decolorationis S12

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bioaugmentation with exogenously functional microbes is a widely used technology in bioengineering and environmental remediation. Generally, the colonization of inoculated bacteria is considered to be the determining factor in technical success. However, increasing reports have shown that bioaugmentation was still effective when the colonization of inoculated bacteria was unsuccessful. Here, an augmentation study with iron-reducing bacteria (IRB, Shewanella decolorationis S12) was conducted in Fe(II)-poor sediments to elucidate the role of exogenously inoculated bacteria for bioaugmentation performance. The results showed that a sufficient amount of IRB inputs enhanced the iron reduction in bioaugmented sediments, even though the exogenous IRB did not colonize after the beginning of the experiment (less than 1% at day 3). The iron reduction function responded to stimulation of the indigenous IRB community such as Clostridium, Cupriavidus, Fervidicella, and Acinetobacter, which comprised less than 1% in the initial sediments. Moreover, compared with microbial community in control sediment, more positive correlations between OTUs were observed for that in S12-added sediments upon network analysis. The pH and oxidation-reduction potential of sediment were found to be the predominant factors shaping the iron-reducing microbial communities. It meant that exogenous IRB successfully trigged functional community via altering microenvironment by the inoculated bacteria. Overall, this study provides a new insight into the understanding of the role of single strain addition in iron-reducing bioaugmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baek G, Kim J, Shin SG, Lee C (2016) Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time. Appl Microbiol Biotechnol 100:927–937

    Article  CAS  PubMed  Google Scholar 

  • Bai YH, Sun QH, Sun RH, Wen DH, Tang XY (2011) Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biological aerated filters. Environ Sci Technol 45:1940–1948

    Article  CAS  PubMed  Google Scholar 

  • Boon N, Top EM, Verstraete W, Siciliano SD (2003) Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community against a 3-chloroaniline shock load. Appl Environ Microbiol 69:1511–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang KL, Ibrahim D, Omar IC (2011) A laboratory scale bioremediation of Tapis crude oil contaminated soil by bioaugmentation of Acinetobacter baumannii T30C. Afr J Microbiol Res 5(18):2609–2615

    Article  CAS  Google Scholar 

  • Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388–1391

    Article  CAS  PubMed  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Evol Syst 31:343–366

    Article  Google Scholar 

  • Chi X, Li J, Wang X, Zhang Y, Leu S, Wang Y (2018) Bioaugmentation with Clostridium tyrobutyricum to improve butyric acid production through direct rice straw bioconversion. Bioresour Technol 263:562–568

    Article  CAS  PubMed  Google Scholar 

  • Cummings DE, Snoeyenbos-West OL, Newby DT, Niggemyer AM, Lovley DR, Achenbach LA, Rosenzweig RF (2003) Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analysis. Microb Ecol 46:257–269

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Ramírez I, Escalante-Espinosa E, Schroeder RA, Fócil-Monterrubio R, Ramírez-Saad H (2013) Hydrocarbon biodegradation potential of native and exogenous microbial inocula in mexican tropical soils. In: Rosenkranz F (ed) Biodegradation of Hazardous and Special Products. IntechOpen Limited London Chapter 8:155–178

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • Gnanaprakasam ET, Lloyd JR, Boothman C, Ahmed KM, Choudhury I, Bostick BC, van Geen A, Mailloux BJ (2017) Microbial community structure and arsenic biogeochemistry in two arsenic-impacted aquifers in Bangladesh. MBio 8:e01326–e01317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gounou C, Bousserrhine N, Varrault G, Mouchel JM (2010) Influence of the iron-reducing bacteria on the release of heavy metals in anaerobic river sediment. Water Air Soil Pollut 212(1–4):123–139

    Article  CAS  Google Scholar 

  • Hassan Z, Sultana M, Westerhoff HV, Khan SI, Röling WFM (2015) Iron cycling potentials of arsenic contaminated groundwater in Bangladesh as revealed by enrichment cultivation. Geomicrobiol J 33:779–792

    Article  CAS  Google Scholar 

  • Herrero M, Stuckey DC (2015) Bioaugmentation and its application in wastewater treatment: a review. Chemosphere 140:119–128

    Article  CAS  PubMed  Google Scholar 

  • Hwang S, Jho EH (2018) Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria. Sci Total Environ 635:1308–1316

    Article  CAS  PubMed  Google Scholar 

  • Jemaat Z, Suárez-Ojeda ME, Pérez J, Carrera J (2013) Simultaneous nitritation and p-nitrophenol removal using aerobic granular biomass in a continuous airlift reactor. Bioresour Technol 150:307–313

    Article  CAS  PubMed  Google Scholar 

  • Jia R, Li L, Qu D (2015) pH shift-mediated dehydrogenation and hydrogen production are responsible for microbial iron(III) reduction in submerged paddy soils. J Soils Sediment 15(5):1178–1190

    Article  CAS  Google Scholar 

  • Kong X, Xu M, Chen M, Zhong X, Cen Y, Sun G (2006) Investigation of the Fe3+ reduction properties of Shewanella decolorationis S12. Microbiol China 33(3):98–103

    CAS  Google Scholar 

  • Li F, Li X, Zhou S, Zhuang L, Cao F, Huang D, Xu W, Liu TX, Feng CH (2010) Enhanced reductive declorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environ Pollut 158(5):1733–1740

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yu S, Strong J, Wang H (2012) Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII-FeII redox wheel” in dynamic redox environments? J Soils Sediment 12:683–693

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53(7):1536–1540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn (IV) reduction. Adv Microb Physiol 49:219–286

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Qu Y, Shen W, Zhang Z, Wang J, Liu Z, Li D, Li H, Zhou J (2015) Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresour Technol 179:436–443

    Article  CAS  PubMed  Google Scholar 

  • Magoč T, Salzberg SL (2011) Flash: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naganuma T, Sato M, Hoshii D, Amano-Murakami Y, Iwatsuki T, Mandemack KW (2006) Isolation and characterization of Pseudomonas strains capable of Fe(III) reduction with reference to redox response regulator genes. Geomicrobiol J 23:145–155

    Article  CAS  Google Scholar 

  • Ogg CD, Patel BKC (2010) Fervidicella metallireducens gen. nov., sp. nov., a thermophilic, anaerobic bacterium from geothermal waters. Int J Syst Evol Microbiol 60:1394–1400

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Yang X, Xu M, Sun G (2017) The role of enriched microbial consortium on iron-reducing bioaugmentation in sediments. Front Microbiol 8:462

    PubMed  PubMed Central  Google Scholar 

  • Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306

    Article  CAS  Google Scholar 

  • Qu Y, Zhang X, Ma Q, Deng J, Deng Y, Van Nostrand JD, Wu L, He Z, Qin Y, Zhou J (2015) Microbial community dynamics and activity link to indigo production from indole in bioaugmented activated sludge systems. PLoS ONE 10:e0138455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelobolina E, Konishi H, Xu H, Benzine J, Xiong M, Wu T, Blöthe M, Roden E (2012) Isolation of phyllosilicate-iron redox cycling microorganisms from an illite-smectite rich hydromorphic soil. Front Microbiol 3:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang MZ, Yang GQ, Min H, Lv ZM, Jia XY (2009) Bioaugmentation with the nicotine-degrading bacterium Pseudomonas sp. HF-1 in a sequencing batch reactor treating tobacco wastewater: degradation study and analysis of its mechanisms. Water Res 43:4187–4196

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yang Y, Sun W, Dai Y, Xie S (2015) Variation of nonylphenol-degrading gene abundance and bacterial community structure in bioaugmented sediment microcosm. Environ Sci Pollut Res 22:2342–2349

    Article  CAS  Google Scholar 

  • Wang H, Li P, Wang Y, Liu L, Yao J (2017) Metagenomic insight into the bioaugmentation mechanism of Phanerochaete chrysosporium in an activated sludge system treating coking wastewater. J Hazard Mater 321:820–829

    Article  CAS  Google Scholar 

  • Xu M, Guo J, Kong X, Chen X, Sun G (2007) Fe(III)-enhanced azo reduction by Shewanella decolorationis S12. Appl Microbiol Biotechnol 74(6):1342–1349

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Fang Y, Liu J, Chen X, Sun G, Guo J, Hua Z, Tu Q, Wu L, Zhou J, Liu X (2013) Draft genome sequence of Shewanella decolorationis S12, a dye-degrading bacterium isolated from a wastewater treatment plant. Genome Announc 1(6):e00993–e00913

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Sun G, Guo J, Xu M (2011) Differential biofilms characteristics of Shewanella Decolorationis microbial fuel cells under open and closed circuit conditions. Bioresour Technol 102(14):7093–7098

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wen D, Zhao C, Tang X (2014) Bioaugmentation accelerates the shift of bacterial community structure against shock load: a case study of coking wastewater treatment by zeolite-sequencing batch reactor. Appl Microbiol Biotechnol 98:863–873

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Deng Y, Zhang P, Xue K, Liang Y, Van Nostrand JD, Yang Y, He Z, Wu L, Stahl DA, Hazen TC, Tiedje JM, Arkin AP (2014) Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci USA 111:836–845

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (No. 91851202, 51508111, 51678163), Doctoral Scientific Research Foundation of East China University of Technology (No. DHBK2017143), and Pearl River S&T Nova Program of Guangzhou, China (No. 201806010050).

Author information

Authors and Affiliations

Authors

Contributions

YP designed the study, performed experiments, analyzed the data, and wrote the manuscript; XY analyzed the data and wrote the manuscript; GS and MX revised the manuscript.

Corresponding authors

Correspondence to Xunan Yang or Meiying Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Yang, X., Sun, G. et al. Functional response of sediment bacterial community to iron-reducing bioaugmentation with Shewanella decolorationis S12. Appl Microbiol Biotechnol 103, 4997–5005 (2019). https://doi.org/10.1007/s00253-019-09816-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09816-w

Keywords

Navigation